
\
us

er
a

m
an

ua
l[

us
er

a
m

an
ua

l\
us

er
a

m
an

ua
l[

us
er

a
m

an
ua

l\
us

er
a

m
an

ua
l

\
us

er
a

m
an

ua
l[

us
er

a
m

an
ua

l\
us

er
a

m
an

ua
l[

us
er

a
m

an
ua

l\
us

er
a

m
an

ua
l

GAFitGAFit

UserManualUserManual
January 4, 2020

Version 1.6

GAFit
User Manual

Roberto Rodríguez-Fernández
Francisco Baptista Pereira

Jorge M. C. Marques
Saulo Vázquez-Rodríguez
Emilio Martínez-Núñez

January 4, 2020
Version 1.6
Build 383

Contents

Contents iii

Conventions 1

License and citation 5

Simplified User Guide 7

I Short manual 9

1 GAFit 11
1.1 Introduction . 11
1.2 Installation . 12
1.3 Configuration . 14
1.4 Simple configuration . 15
1.5 Jobs . 16
1.6 Examples included . 16

2 Jobs 19
2.1 Job configuration . 19

3 Intemolecular Module 23
3.1 An example . 23
3.2 Interactions . 24
3.3 charges . 25
3.4 needle . 26
3.5 Bounds . 26
3.6 Fitting . 27
3.7 Defined potentials . 27
3.8 Final configuration . 28
3.9 Results . 29
3.10 Plotting results . 29
3.11 FORTRAN interface . 30
3.12 Analytical expressions . 33

4 MOPAC module 37
4.1 Enhanced interface with MOPAC 41

5 CHARMM module 43

iii

iv Contents

6 mvariable module 45

7 Simple configuration 47
7.1 Intermolecular simple configuration 47
7.2 Mopac simple configuration 47
7.3 Charmm simple configuration 48
7.4 Mvariable simple configuration 48
7.5 Generic simple configuration 48

II Step by step examples 49

8 The examples 51

9 Xe + [Li(Uracil)]+ 55
9.1 Preparing input files . 55
9.2 Running the example . 59
9.3 Examining results . 64

10 User designed analytical expressions 69
10.1 Preparing input files . 70
10.2 Running and examining results 73

11 External Interface 75
11.1 Input files . 75
11.2 Running the example and examining results 79

12 MOPAC Interface 87
12.1 Prerequisites . 87
12.2 Input and executable files . 87
12.3 Running the example and examining results 91

13 Enhanced MOPAC Interface 97
13.1 Input and executable files . 97
13.2 Running the example . 98

IIIReference 101

14 Evolutionary Algorithms 103
14.1 Genetic Algorithms . 104
14.2 The Genetic Algorithm used in GAFit 106

15 Input files 115
15.1 Section [parameters] . 117
15.2 Section [job] . 118
15.3 Section [print] . 122
15.4 Section [coefficient names] 122

16 Output files 123
16.1 Other output files . 125

Contents v

17 Intermolecular module: input files 127
17.1 Section [job] . 128
17.2 Section [print] . 132
17.3 Section [analytical] . 132

18 Intermolecular module: Specifiying a new interaction po-
tential 133
18.1 Modifiying potentials.f and userpotential.f 133
18.2 Analytical expression . 141

19 Intermolecular module: Fpu simulator 145
19.1 Fpu overview . 145
19.2 Mode of operation . 146

20 Intermolecular module: Tools 153
20.1 needle . 153
20.2 fitview . 154
20.3 ufpu . 156

21 MOPAC module 159
21.1 External potential . 159
21.2 Interfacing with MOPAC 2009 161
21.3 External command . 164
21.4 injector . 164
21.5 extractor . 167
21.6 fitter . 169
21.7 Caveats . 172
21.8 MOPAC 2012 . 172
21.9 MOPAC 2016 . 172

22 Shepherd 173
22.1 Controling freezes . 175
22.2 Operating modes . 175
22.3 Parallel processes . 176

23 Mopac module tools 183
23.1 lsexdata . 183
23.2 mkbounds . 184

24 AT expressions 185

25 CHARMM module 187
25.1 External Interface . 187
25.2 Interfacing with CHARMM 189
25.3 External command . 194
25.4 chmconfigurator . 195
25.5 chmreference . 196
25.6 chmrunner . 197
25.7 chmfinal . 201

26 Mvariable module 203

vi Contents

26.1 External interface . 203
26.2 Interfacing with mvariable 203
26.3 mvtest . 207

27 Generic module 209
27.1 External interface . 210
27.2 Interfacing with generic . 210
27.3 The example . 211

Appendices 227

A Source code 227
A.1 Source files . 227
A.2 Analytical job . 228
A.3 Application . 228
A.4 Fpu routines . 229
A.5 GAFit . 229
A.6 Genetic Algorithm Core . 229
A.7 MODULES . 230
A.8 Miscellaneous . 232
A.9 Tools . 233

B License 235

References 247

Other interesting references to the reader 249

List of tables 253

List of figures 255

List of files 257

Conventions

Symbols

−→ tabs

blank spaces

. . . or [. . .] more output not shown

' wrapped line

& wrapped line continuation

Acronyms

AM1 Austin Model 1. .89
BLX-α Blend Alpha Crossover . 112
CHARMM Chemistry at HARvard Macromolecular Mechanics 12
CPU Central Processing Unit . 11
DNA deoxyribonucleic acid . 104
DPC Double Point Crossover (or TPX, Two Point Crossover). . .106
FPU Floating Point Unit . 33
GA Genetic Algorithm . 12
MOPAC Molecular Orbital PACkage. .12
MPX Multiple Point Crossover . 106
NFS Network File System . 177
PES Potential Energy Surface . 11
SBX Simulated Binary Crossover. .112
SPC Single Point Crossover (or SPX) . 106
VC vinyl cyanide. .87

1

2 Contents

Input, output and files

• A command line interactive shell session:

tar -xvzf gafit-VERSION.tar.gz
cd gafit-VERSION
./configure
make
make install

• A program output to interactive terminal or redirected to a file:

[..]
MODULE INTERMOLECULAR

Coordinates:[coord.molden]
Energies:[energies.txt]
Atom2type:[atom2type.txt]
Bounds:[bounds.txt]
Charges:[charges.txt]
Potential read: 1
All coefficients: no, Read and repeat subset
Interactions types: inter
Fitting: relative
[...]

• An input or output file:

File 1: Input file example.
[job]
c o e f f i c i e n t s : 5

• Source code file:

File 2: C source code
34 int i ;
35
36 / / to print stats every evaluations /1000
37 int las t_eva ls ;
38 int outputeach = 0;
39
40 i f (jo−>evaluations < STATS_MAX_LINES / 10) / / 100
41 outputeach = 1;

• Command line tool syntax:

command [-a][-b c] [-d [e]] [-f {g|h|i}] mandatory-argument [optional-argument]

options or flags consist of ’-’ characters and single letters or digits,
such as ’-a’ or ’-1’ which enable a feature. Some of them have an
option argument too, like the ’-b c’, where ’c’ is the argument for
option ’-b’. Here ’c’ is used to ’tune’ the ’feature’ enabled with ’-b’.

Arguments or option-arguments enclosed in the ’[’ and ’]’ notation
are optional and can be omitted like the ’[optional-argument]’ or

Contents 3

’[e]’ or ’[-d [e]]’. The ones not enclosed like ’mandatory-argument’
must be set.
If the ’-b’ feature is enabled ’c’ must be set, but if the ’-d’ feature is
enabled, ’e’ is optional.
’{’ and ’}’ notation represents a set of options to select. Arguments
separated by the ’|’ bar notation are mutually-exclusive, and only
one of them must be chosen from the set enclosed with ’{’ and ’}’.

License and citation

License

GAFit. A computer toolkit for parametrization of potential energy sur-
faces.

Copyright © 2014 Roberto Rodríguez-Fernández, Francisco Baptista
Pereira, Jorge M. C. Marques, Saulo Vázquez-Rodríguez and Emilio Martínez-
Núñez.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MERCHAN-
TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see Appendix B.

Citation

The main features of GAFit are described the following papers:

1. Roberto Rodríguez-Fernández, Francisco B. Pereira, Jorge M.C. Mar-
ques, Emilio Martínez-Núñez, and Saulo A. Vázquez. “GAFit: A
general-purpose, user-friendly program for fitting potential energy
surfaces”. In: Computer Physics Communications 217 (2017), pp. 89–
98. ISSN: 0010-4655. DOI: https://doi.org/10.1016/j.cpc.2017.02.
008. URL: http://www.sciencedirect .com/science/article/pii /
S0010465517300607

2. J. M. C. Marques, F. V. Prudente, F. B. Pereira, M. M. Almeida,
A. M. Maniero, and C. E. Fellows. “A new genetic algorithm to

5

https://doi.org/https://doi.org/10.1016/j.cpc.2017.02.008
https://doi.org/https://doi.org/10.1016/j.cpc.2017.02.008
http://www.sciencedirect.com/science/article/pii/S0010465517300607
http://www.sciencedirect.com/science/article/pii/S0010465517300607

6 Contents

be used in the direct fit of potential energy curves to ab initio and
spectroscopic data”. In: Journal of Physics B: Atomic, Molecular and
Optical Physics 41.8 (2008), p. 085103. URL: http://stacks.iop.org/
0953-4075/41/i=8/a=085103

Please, cite these articles in every scientific work that reports results
obtained with GAFit.

http://stacks.iop.org/0953-4075/41/i=8/a=085103
http://stacks.iop.org/0953-4075/41/i=8/a=085103

Simplified User Guide

This manual is accompanied by a concise guide:

SimplifiedUserGuide.pdf.

It’s recommended to read it before this manual. It’s focused in simple and
practical examples of use: Fitting pairwise intermolecular potentials, in-
terfacing with the CHARMM program, interfacing with the MOPAC pro-
gram and fitting a user-defined function to data.

7

Part I

Short manual

9

1GAFit

1.1 Introduction

To invent, you need a good imagination
and a pile of junk.

Thomas A. Edison

One of the key concepts in chemistry is that of Potential Energy Sur-
face (PES)[3]. It comes from the Born-Oppenheimer approximation, which
facilitates the solution of the time-independent Schrödinger equation for
molecular systems. Fortunately, the errors associated with this approxi-
mation are negligible for many of the systems and conditions of interest
to chemists. The potential energy surface of a molecular system governs
many of its chemical properties, and particularly, the dynamics, that is,
the spatial evolution of nuclei with time. Most of the chemical dynamics
simulations performed nowadays involve integration of the classical equa-
tions of motion, calculating the forces on atoms at each step either directly
by electronic structure calculations (i.e., “on-the-fly” or direct dynamics)
or from analytical PESs. In principle, the direct dynamics approach may
be the preferred option for simulations of reactive systems that include a
small number of atoms, because one avoids the construction of the ana-
lytical surface. The use of analytical PESs, however, has a clear advan-
tage in terms of Central Processing Unit (CPU)-time costs, being manda-
tory in molecular dynamics simulations of systems composed of thousands
of atoms1. Even for small-size systems, the use of an analytical surface
may be a convenient choice. If it is developed with care, it may be almost
as accurate as the exact surface corresponding to the electronic structure
method used as a reference for its construction.

1In molecular mechanics and molecular dynamics, the analytical potential energy surface
of a system is generally known as the force field.

11

12 GAFit

The development of analytical PESs or force fields may be facilitated by
using optimization methods, and many research groups have been using
them for their particular purposes. However, to our knowledge, there is
not a general code that allows users to parametrize analytical surfaces or
force fields in a relatively easy way. The aim of the present work was to
write a suite of programs to assist users in developing analytical surfaces.
This suite of programs will be called GAFit. We used this name because,
with this computational tool kit, a Genetic Algorithm (GA) conducts the
fitting –Fit– or parametrization of a desired potential energy surface. The
genetic algorithm was not developed in this work; rather it was taken from
the literature[2]. For our purposes, the advantages of a genetic algorithm
against other type of optimization methods are detailed later on. In this
work, the GAFit program is applied to the development of intermolecular
potentials for the interaction between two fragments–e.g. molecules–, and
to the reparametrization of a semiempirical Hamiltonian2. However, it
can be easily adjusted for other purposes in which fittings of a series of
parameters are needed. The core of the package is the genetic algorithm
developed by Marques, Prudente, Pereira, Almeida, Maniero, and Fellows
[2] and co-workers.

The functionality of the package was extended separating the core it-
self from the fitting targets –See Figure 1.1–. Now, users can choose,
upon their programming skills, from introducing their custom potentials
directly into code, use an easy pre-coded potential template to do so, or for
those with no programming knowledge at all, use an analytical expression
or the most used potentials coded just ready to use –internal job type–. A
complete set of tools were added to the package to facilitate the creation
and configuration of input files.

In addition, a external interface –external job type– was developed to
interact with external programs.

Using this interface were developed the tools needed to use GAFit to
parametrize the Molecular Orbital PACkage (MOPAC) and Chemistry at
HARvard Macromolecular Mechanics (CHARMM), among others.

1.2 Installation

The configuration, compilation and installation phases are done by the
GNU autotools utilities.

tar -xvzf gafit-VERSION.tar.gz
cd gafit-VERSION
./configure
make
make install

The binaries go into $HOME/bin and other files into $HOME/share. To
install into /usr/local (note that you need superuser permissions.), use:

2Semiempirical Hamiltonians supplemented with specific reaction parameters were first
proposed by Truhlar[4] as a practical method for direct dynamics calculations.

1.2. Installation 13

Configure system

Create first population

Evaluate first population

Tournament selection

Genetic operations

Evaluation

Elitism

Save all time best

Current evaluations
<

evaluations

End

4.000000000000
0.000000000000
-5.000000000000
0.000000000000
1.000000000000

Fitness: 0.000000000000

best.txt

YES

NO

GA
interface

Figure 1.1: GA main loop

14 GAFit

./configure --prefix=/usr/local
make
sudo make install

To force a fortran compiler (e.g. ifort) use:

./configure FC=ifort

To force a C compiler (e.g. icc) use:

./configure CC=icc

Or any combination above:

./configure --prefix=/usr/local FC=ifort CC=icc

To compile with debug options:

./configure --enable-debug

In addition, the usual targets of Autotools apply (i.e. make distcheck, make
clean etc).

1.3 Configuration

GAFit uses only one configuration file: job.txt, divided into logic [sec-
tions]. Each [section] have key/value pairs and all have default values.

File 1.1: job.txt file example
[job]
runs : 1
type : external auto
command: external−intermolecular . sh
evaluations : 5000000
Geometries : moldeni . dat
Energies : energies . dat
Atom2type : atom2types . txt
Bounds : bounds . txt
Charges : charges . txt
Potential : 1
All c o e f f i c i e n t s : no
f i t t i n g : r e la t i ve

[parameters]
population : 50
crossover rate : 0.75
blx_alpha : 0.5
mutation rate : 0.1
e l i t i sm : yes
tournament s ize : 5
crossover : sbx
mutation : sigma
sigma : 0.1
d i rec t i on : min

[print]
geometries : yes
runs : yes

1.4. Simple configuration 15

• The [sections] could be skipped if default values are used.

• Only options applicable to the actual job are processed.

• Options or sections erroneous are omitted.

• Section and options names are case insensitive.

There are three main [sections]:

Parameters: Genetic algorithm settings. It is safe to skip this section: default
values are good.

Job: Job definition and its options.

Print: Output options.

1.4 Simple configuration

Some of the applications presented here have default values except for
a few group of parameteres which must be given from users. A simple
configuration method has been developed using a few key directives in the
configuration file job.txt, as shown in the example File 1.2.

File 1.2: Simple configuration job.txt file example
[Job]
Evaluations : 100000
Application : MOPAC
Exec : / usr / programs / mopac /MOPAC2016. exe

The application modules with an alternative simple configuration are
sumarized in table 1.1.

Table 1.1: Modules with a simple configuration.

application notes

intermolecular Intermolecular potential energy fit.
mopac Fitting the properties of a molecular system using

MOPAC.
charmm Fitting the properties of a molecular system using

CHARMM.
mvariable multivariable fitting.
generic Generic module to interface external programs.

The keyword application in File 1.2 shown that the simple configura-
tion module in use is mopac.

16 GAFit

1.5 Jobs
This changed from version 1.3
onwards. An external program evaluates the individuals generated by GAFit like

MOPAC or CHARMM. The external program behavior is the target of the
fit.

The type option value must be set in section [job] to select how to
communicate with the external program or the intermediate programs be-
tween GAFit and the target program.

external : One individual is passed in each external program run.

external bulk : The whole generation passed per external program run.

external auto : The external program knows the GAFit’s protocol and
can configure it as needed.

1.6 Examples included

There are several folders in the package with examples divided in two
categories:

Simple configuration method This examples, from the Simplefied User
Guide, are in the folder simple-mode-examples and follow Section
1.4.

• charmm

• intermolecular

• mopac

• mvariable

• generic

Detailed configuration This examples are in the folder advanced-mode-
examples.

• Forcefield

charmm Charmm example.

• Intermolecular

uracil Here the interaction between Xe and the [Li(Uracil)]+

complex is studied.

Figure 1.2: [Li(Uracil)]+- Xe example.

H

H

N

O

C

C

C

N

H

H

C O Li Xe

1.6. Examples included 17

analytical Same as the uracil example but using an analytical
expression as potential.

n2n2 Here the interaction between two nitrogen molecules is
studied. A fully custom potential can be implemented using
userpotential.f file.

• Miscellaneous
external

An example in C with a generic external fit. The given test
code supports both external and external bulk options. This
code fits data from file external.values –value pairs “(x, f(x))”
to fit–, using file bounds.txt as upper and lower limits, to a
polynomial of degree n.

anx
n + an−1x

n−1 + ...+ a1x+ a0

The polynomial degree is the number of coefficients minus
one.

poly-fortran The same as above but written in fortran.
exponential Code in C to fit data from file exponential.values

to an exponential.

n∑
i=1

aie
−bi∗x

To use a exponential with n terms you must specify in file
job.txt coefficients=2*n and give them a name. The coeffi-
cient limits are taken from bounds.txt file.

mvariable multivariable example fitting.
• mopac: Change and/or set MOPAC_EXECUTABLE and MOPA

C_LICENSE in file external-mopac2009.sh to run with MOPAC
(any version from)2012 to 2016).

mopac It employs the interface with MOPAC. Source code for
the interface tools is in the src/mopac folder.

shepherd It employs the enhanced interface with MOPAC.
vc As in the previous one, it uses the enhanced interface with

MOPAC. Taken from Homayoon, Vázquez, Rodríguez-Fernández,
and Martínez-Núñez [5]

gradient Optimizing aldehyde using gradients respect to Carte-
sian coordinates in a pm6 model parametrization.

2Jobs

Chemistry is a class you take in high
school or college, where you figure out
two plus two is 10, or something.

Dennis Rodman, ex NBA player

The files needed for a job depend on the type of job to be done where
an external program or tool evaluates the coefficients vector. For instance,
an ab initio, density functional theory or semiempirical program can be
employed to calculate the properties of our system, that will be employed
as targets. So far, scripts and binaries are provided with the program to
work with MOPAC, a program for semiempirical calculations, fitting the
properties of a molecular system: energy barriers for the unimolecular
decomposition channels, geometries and frequencies of the corresponding
transition states, etc. . .

Other interfaces have been developed apart from MOPAC: CHARMM
and mvariable.

2.1 Job configuration

GAFit can pass the coefficient vectors one per run, external type, a whole
population per run, external bulk type, or as required by the external
program, external auto type.

• Simple configuration: external or external bulk. There are six
options to configure as shown in File 2.1:

type: external bulk. Whole population per run.
command: ./external, external command to execute per run. Nor-

mally a shell script.
coefficients: 5, number of coeficients.

19

20 Jobs

external input: external.input, file where GAFit will write all
the population.

external fit: external.fit, file where the external command will
write the evaluation of each individual to be read by GAFit.

bounds: bounds.txt, bounds file.

File 2.1: External job simple configuration example
[job]
evaluations : 50000
type : external bulk
command: . / external
c o e f f i c i e n t s : 5
external input : external . input
external f i t : external . f i t
bounds : bounds . txt

• Automatic configuration: external auto. Only two options to config-
ure as shown in File 2.2:

type: external auto.

command: ./external,

GAFit obtains its configuration from external command. When
GAFit calls the external command with a command line param-
eter with value “0”, the external command write a file named “re-
sponse” with the requested configuration to GAFit.

File 2.2: External job automatic configuration example
[job]
evaluations : 50000
type : external auto
command: . / external

File 2.3: Response file from the external command
[job]
type : external bulk
c o e f f i c i e n t s : 16
external input : mopac . input
external f i t : mopac . f i t
bounds : bounds . txt

[c o e f f i c i e n t names]
BETAS H
ZS H
ALP H
GSS H
USS C
UPP C
BETAS C
BETAP C
ZS C
ZP C
ALP C

2.1. Job configuration 21

GSS C
GSP C
GPP C
GP2 C
HSP C

3Intemolecular Module

A mathematician is a device for turning
coffee into theorems.

Alfréd Rényi

The intermolecular module is intended to parametrize an internal in-
termolecular potential energy function to fit a set of interaction energies
between two fragments (or intra in the same fragment). In the simple configuration

method use the keyword ap-
plication: intermolecular

Figure 3.1: Intermolecular potential pair example.

B
C
D
E
F

v= e B-Br+
C

r D
+

r

E
F

A

A

If we use an intermolecular potential pairs like Fig. 3.1:

• the genes are A, B, C, D, E, F.

• the chromosome is: ABCDEF

3.1 An example

Here, we are going to fit intermolecular potential pairs like V = Ae−Br+ C
rD

between two fragments (e.g. a molecule). A,B,C,D are the coefficients to
fit per each interaction. W, X, Y, Z are the atoms in the fragments.

23

24 Intemolecular Module

W1

X2

W3

Fragment A
Y4

Z5

Y6

Fragment B

The data to fit are geometries and their correspondent energies like
the File 3.1 named as geometries.txt and the file 3.2 named energies.txt
respectively.

File 3.1: geometries.txt
6

X Y Z
W −13.694289 −0.182672 0.000000
X −13.299638 0.824476 0.000000
W −12.403476 −0.960776 0.000000
Y −14.263389 −0.348152 −0.831048
Z −14.263389 −0.348152 0.831048
Y −11.316612 0.153002 0.000000

6
X Y Z

W −9.694289 −0.182672 0.000000
X −9.299638 0.824476 0.000000
W −8.403476 −0.960776 0.000000
Y −10.263389 −0.348152 −0.831048
Z −10.263389 −0.348152 0.831048
Y −7.316612 0.153002 0.000000
. . .

The geometries format is the known as “xyz” format. The energies
are obtained from high level ab initio calculations.

File 3.2: energies.txt
−0.016881788 1
−0.024242894 1
−0.033981373 1

. . .

The second column into energies.txt is the weight of the correspondent
geometry in the fit.

3.2 Interactions

W1

X2

W3

Fragment A
Y4

Z5

Y6

Fragment B

The interactions in our example are shown above. The atoms W1 and
W3 are equivalents like Y4 and Y6. So, there are 4 different interactions
with some redundant coefficients:

3.3. charges 25

A1,4 = A1,6 = A3,4 = A3,6

B1,4 = B1,6 = B3,4 = B3,6

. . .

A2,6 = A2,4

B2,6 = B2,4

. . .

etc

We have to inform about this with a new file, atom2type, who maps
between atom number in the geometry and their type number. This file is
named atom2type.txt, and shown in File 3.3.

File 3.3: atom2type.txt
3 6

1 W 1
2 X 2
3 W 1
4 Y 3
5 Z 4
6 Y 3

The information in the file is as follows:

• In the first line, the number of atoms in the Fragment A and the total
number of atoms.

• In each of the following lines, the atom number as noted in the geom-
etry, the chemical symbol and the type number.

• It can be done manually or by a utility included in the GAFit’s pack-
age called needle.

Using this information, GAFit knows that there are 4 different inter-
actions, so there are 4 equations of 4 coefficients each. In this case, a
chromosome from any individual has 16 real values:

W1

X2

W3

Fragment A
Y4

Z5

Y6

Fragment B

A B C D A B C D A B C D A B C D

3.3 charges

If our potential use partial charges, we must use another file, charges.txt:

26 Intemolecular Module

• Partial charges must be specified using the atom types considered in
the file atom2type.

• A template with 0 values can be generated by the needle tool.

One of the included potentials, the fourth, use charges. See Table 3.1.
File 3.3 has four different atom types, so File 3.4 has four lines.

File 3.4: charges.txt
1 +0.12
2 −0.24
3 −0.08
4 +0.16

3.4 needle

needle is a tool written in Perl to analyze the geometry –File 3.1– file
building the atom2type –File 3.3– and charges –File 3.4– files automati-
cally.

$ needle -h
needle v0.5 (c)GAFit toolkit - 2010-2013

collects sets of equivalent atoms
input: any geometries input file

-d debug
-p N fragment A atoms
-o creates needed files

needle builds bonds and rings from atom Cartesian coordinates and search
for equivalent atoms. This only work for F, H, Si, O, N, S, C and Au. You
can invoke needle as shown below:

$ needle -p 3 -o geometries.txt

-p 3 there are 3 atoms in fragment A.

-o create the files atom2type and charges.

More on needle in section 20.1.

3.5 Bounds

This is our chromosoma:

A B C D A B C D A B C D A B C D

And now, we have to establish the limits of each coefficient, each gene.
This is accomplished with a new file, bounds.txt. We can do this giving
values to only the first fourth coefficients, or to all of them, setting the
option all coefficients to no or yes respectively in the [job] section.

• option all coefficients:no, 4 bounds:

3.6. Fitting 27

TEXT OR EMPTY
−100 100. 9
0 . 100.0 9
−1500. 5000.0 9
3 5 0

• option all coefficients:yes, 16 bounds:

TEXT OR EMPTY
−100 100. 9
0 . 100.0 9
−1500. 5000.0 9
3 5 0
0. 100.0 9
−1500. 5000.0 9
[. . .]

• The first and second column are the lower and upper bound respec-
tively.

• In the third column:

0 the gen (coefficient) is handled as integer.

9 the gen is handled as real number.

1..8 the gen is handled as real number but using from 1 to 8 decimal
places as specified here.

• the first line is skipped, so you can leave it empty or write a comment
on it.

3.6 Fitting

There are three types of fitting:

absolute ∑[
(VReferencei −VCalculated(i))

2 Weight(i)
]

relative

∑[
(VReferencei −VCalculated(i))

2

VReference2
i

Weight(i)

]

user This option route the fitting to a user defined function.

3.7 Defined potentials

The value of potential in the section [job] selects the defined potential to
use as shown in Table 3.1. We have to use the number 1 from table.

28 Intemolecular Module

Table 3.1: Included potentials.

Value Coefficients Potential

-1 any any user defined in userpotential.f

0 any any analytical expression defined in an [analytical] section

1 4 V = Ae−Br + C
rD

2 6 V = Ae−Br + C
rD

+ E
rF

3 8 V = Ae−Br + C
rD

+ E
rF

+ G
rH

4 2 V = A

[(
B
r

)12
−

(
B
r

)6
]
+ 332.0532

qiqj
r

3.8 Final configuration

Now, we can write the configuration like File 3.5. All the options, ex-
cept the type, command and Evaluations, are defaults, so they could
be omitted. The option Evaluation: 5000000 means that GAFit run for
5000000 generations and then finish.

File 3.5: job.txt
[job]
type : external auto
command: external−intermolecular . sh
Evaluations : 5000000
Geometries : geometries . txt
Energies : energies . txt
Atom2Type : atom2type . txt
Bounds : bounds . txt
Potential : 1

The program binary which comprises the intermolecular module is
intpot. We have to call it passing the correct options. In the job.txt we
call external-intermolecular.sh–File 3.6– which in turn call intpot and sets
some options.the inpot binary must be in

the PATH!

File 3.6: external-intermolecular.sh
! / bin / sh

export EXTERNAL_INPUT=" intpot . input "
export EXTERNAL_FIT=" intpot . f i t "
export BOUNDS_FILE="bounds . txt "

intpot $1 bulk

The simple configuration method equivalent to both File 3.5 and File
3.6 is only 3.7.

File 3.7: simple configuration job.txt
[job]
Evaluations : 5000000
Application : intermolecular
Potential : 1

3.9. Results 29

3.9 Results

GAFit runs in the folder where is the configuration file, job.txt–, writing
the best values found till now to the file best.txt. After the 5000000 genera-
tions, in this file is the best result obtained. Is this the best result possible?
Sure not, but it is the best found in this run.

File 3.8: best.txt
671108.383527237223
5.000000000000
−480.511518927649
−522.865043822352
7.000000000000
[. . .]

Fitness : 7.063407502683

3.10 Plotting results

Included in the intermolecular module is the fitview utility –More in
section 20.2–.

• fitview extracts and create a bunch of plots to view the results using
the saved best.txt file coefficients.

• you can select the upper and lower limits and the stepping –delta
option– of the plot.

• it generates two files per plot, one with the data and other with the
gnuplot commands needed to create graphic files –bmp, jpeg, pdf,
etc– or direct plot to a graphical terminal. The data file could be used
to load data to a spreadsheet.

• the plots are:

– one per interaction.

– an general evaluation with all the geometries.

– all the interactions in the same plot.

$ fitview -h
fitview v0.3 (c)GAFit toolkit - 2010-2013
Usage: fitview [tag] [-l value] [-u value] [-d value] [-h]

-l lower bound
-u uper bound
-d delta
-e gnuplot supports enhanced terminal
-h this help
-g general evaluation only
default [0.500000,10.000000] delta: 0.010000

30 Intemolecular Module

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10

P
ot

en
tia

l

R

Interaction)type)10

Ex:)H)(10)-Xe(14)

3.11 FORTRAN interface

As stated before, you can also write your own routines in FORTRAN to
add a new intermolecular pair potential. To do so, the intermolecular
module expose to the user two FORTRAN modules and two routines.

• FORTRAN modules:

– VGLOBALES: it give access to the program core variables.
– USERDATA: here, the user can load and customize its own vari-

ables and data.

• subroutines and functions:

– function ix(i,j,k): usefull to access coefficients knowing only
which are the atoms involved in the interaction.
k k=1, coefficient A, k=2, coefficient B, ...
i first interaction atom.
j second interaction atom.

– subroutine coordinates(geo,atom,x,y,z): to obtain the atom’s
Cartesian coordinates.
geo geometry number.
atom atom number.
x,y,z returning coordinates from subroutine.

There are two options to add a new potential in the code –src/inter
folder–:

• Add it into potential.f. In this file are coded the potentials 1,2,3 and 4.
You can modify one of them or add a new one, assigning it a positive
integer number. The subroutines to modify are:

3.11. FORTRAN interface 31

– setcoefs to register the number of parameters needed.
– getcharges to take into account if the charges are needed.
– potRouter to route the new potential to its function.
– curRouter to route fitview utility to the new potential.

In the [job] change potential option to potential=n, where n is the
number choosen in potRouter subroutine to route to the new poten-
tial.

• Modify userpotential.f: this file is a template, you only need to cus-
tomize it for your needs:

– you must write the potential to use.
– modify the fitting function or write a new one.
– in the [job] change potential option to potential=-1.

In both cases is mandatory to recompile GAFit. We are going to view
in detail how to implement a new potential using userpotential.f.

• Add your code to userdata module if needed.

1 c USER POTENTIAL
2 c please change as needed
3
4
5 c USER DATA MODULE
6
7 module userdata
8 implicit none
9 save

10 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
11 c define your variables here
12
13 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^
14 end module userdata
15
16
17 c USERREAD SUBROUTINE
18
19 subroutine userread ()
20 use userdata
21 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
22 c your code to read external f i l e s here
23
24
25 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^
26 end

• Change the number of coefficients and if you are using the charges
file.

29 C USETCOEFS FUNCTION
30
31 integer function usetcoefs ()
32 c here spec i fy the number of c o e f f i c i e n t s
33 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
34 usetcoefs=4

32 Intemolecular Module

35 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^
36 end
37
38
39 c UGETCHARGES FUNCTION
40
41 logical function ugetcharges ()
42 c spec i fy i f you need a charges f i l e
43 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
44 ugetcharges =. false .
45 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^
46 end

• Here you have nothing to change...

48 c USERPOT SUBROUTINE
49
50 subroutine userpot (geo , x ,nmax, vpot)
51 use vglobales
52 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 c to use your external data
54 use userdata
55 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 integer nmax, geo , i , j , k
57 double precision d , vpot , userv
58 double precision X(nmax)
59 c v−−−−−−−CHANGE−ME−IF−NEEDED−−−−−−−−−−v
60 vpot =0.0d0
61 c note : here a l l interact ions are calculated
62 do i =1 ,nprox
63 do j =1 ,nsam
64 k= j +nprox
65 d=r (geo , i , k)
66 vpot=vpot+userv (d , i , k , x ,nmax)
67 enddo
68 enddo
69 c −̂−−−−−−CHANGE−ME−IF−NEEDED−−−−−−−−−−^
70 return
71 end

• Modify or write your potential here.

74 c FUNCTION USER POTENTIAL
75 c write userv using ix function to access
76 c individual c o e f f i c i e n t s .
77 c use CALL coordinates (geometry , atom , x , y , z)
78 c to access individual coordinates .
79
80 double precision FUNCTION userv (r , i , j , x ,m)
81 implicit none
82 integer i , j ,m, ix
83 dimension x (m)
84 c note : here ONE interact ion i s calculated
85 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
86 double precision x , r , a , b , c , d
87 A=x (ix (i , j , 1))
88 B=x (ix (i , j , 2))
89 C=x (ix (i , j , 3))
90 D=x (ix (i , j , 4))
91 userv=A*EXP(−B*R)+C/R**D
92 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^

3.12. Analytical expressions 33

93 RETURN
94 END

• Change or write your fitting function.

97 c USER FITTING FUNCTION
98 c write here the user f i t t i n g function
99 c i f you only need the f i t t i n g function

100 c leave the l ine " c a l l potRouter . . . " unchanged
101 c and change the l ine " u s e r f i t t i n g = . . . " with your
102 c f i t t i n g function .
103 c i f you have a userv function (above this) , you can
104 c use i t here , or access i t via potRouter
105
106 double precision function u s e r f i t t i n g (x ,m, geo)
107 use vglobales
108 use userdata
109 double precision x , vpot
110 integer m, geo
111 dimension x (m)
112 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
113 call potRouter (geo , x ,m, vpot)
114 u s e r f i t t i n g =(v (geo)−vpot) * (v (geo)−vpot)
115 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^
116 return
117 end

• Recompile gafit.

• in the [job] change potential option to potential=-1

• run GAFit.

3.12 Analytical expressions

You can use an analytical expression as potential setting potential=0 in
the [job] section as shown in File 3.9.

File 3.9: Analytical expression
[job]
Evaluations : 5000000
Geometries : geometries . txt
Energies : energies . txt
Atom2Type : atom2type . txt
Bounds : bounds . txt
Potential : 0

[analyt i ca l]
c o e f f i c i e n t s : a , b , c , d
distance : d i s t
expression : tes t potent ia l 1
potent ia l : pot

[tes t potent ia l 1]
v1=a*exp(−b* d is t) ;
v2=c / d i s t **d ;
pot=v1+v2

• Analytical expressions are compiled to bytecode once.

• The bytecode is run into a virtual Floating Point Unit (FPU) as needed.

34 Intemolecular Module

• As interpreted code, It run 10 times slower than FORTRAN poten-
tials compiled into source code.

• They are easy to write and modify.

• There is a utility, ufpu, to test them before GAFit run.

• The [analytical] section informs GAFit which are the names in use
for the coefficients, the distance and the potential variables. Also, in
this section you tell gafit which analytical expression to use. You can
have many analytical expressions defined, each one in its own section
as shown in the File 3.10.

File 3.10: Many analytical expressions
. . .

[analyt i ca l]
expression : potent ia l 3
distance : d i s t
potent ia l : pot
c o e f f i c i e n t s : a , b , c1 , c2 , d1 , d2 , e1 , e2

[potent ia l 1]
V=A*EXP(−B*R)+C/R**D;

[potent ia l 2]
v=a*exp(−b*r)+c / r **d+e / r ** f ;

[potent ia l 3]
v1=a*exp(−b* d is t) ;
v2=c1 / d i s t **c2 ;
v3=d1 / d i s t **d2 ;
v4=e1 / d i s t **e2 ;
pot=v1+v2+v3+v4

. . .

The analytical expressions compiler supports the operators and func-
tions noted in Table 3.2.

3.12. Analytical expressions 35

Table 3.2: Operators and functions supported

Operators Precedence Example

= assignment 0 a=b
+ addition 1 a+b
- subtraction 1 a-b
* multiplication 2 a*b
/ division 2 a/b

unary + unary plus 3 +a
unary - unary minus 3 -a

** a raised by power b, ab 4 a**b
^ a raised by power b, ab 4 a^b

Puntuaction

() change precedence (a+b)*c
, comma, separate argu-

ments in functions
pow(a,b)

; semicolon, separate in-
dividual expressions

a=b+c; d=e+f

Functions

exp number e raised by
power a, ea

exp(a)

pow a raised by power b, ab pow(a,b)
sin sine of a (in radians),

sin(a)
sin(a)

cos cosine of a (in radians),
cos(a)

cos(a)

4MOPAC module

In mathematics you don’t understand
things. You just get used to them.

John von Newmann

This module was designed for reparameterizations of semiempirical
Hamiltonians interfacing MOPAC, which may be useful for direct dynam-
ics simulations of chemical reactions

The MOPAC interface, File 4.1, are based in three tools:

injector configure GAFit and create the files needed to run MOPAC.

extractor analyzes MOPAC output to extract and convert useful data –
like heats of formation, Cartesian coordinates, etc– to a format suit-
able for fitter . Also controls if there is execution errors. All the
extracted information are passed to fitter.

fitter evaluates the data and give out the results to GAFit.

File 4.1: External command to interface with MOPAC
1 # ! / bin / sh
2 export MOPAC_LICENSE=$HOME/ mopac2009
3
4 export COEFS_TEMPLATE=" template . coe fs "
5 export MOPAC_TEMPLATE=" template .mop"
6 export MOPAC_MOP=" mopac_input .mop"
7 export EXTERNAL_INPUT="mopac . input "
8 export EXTERNAL_FIT="mopac . f i t "
9 export EXTRACTED_DATA=" extracted . data "

10 export BOUNDS_FILE=" bounds . txt "
11
12 i n j e c t o r $1
13 i f ["$1 " −ne "0"]
14 then
15 $MOPAC_LICENSE/MOPAC2009. exe $MOPAC_MOP

37

38 MOPAC module

16 extractor $1
17 f i t t e r $1 $EXTRACTED_DATA $EXTERNAL_FIT
18 f i

The interface has some features:

• It could be configured by environment variables. All tools have notice
of them.

• All the environment variables have default values. File 4.2.

File 4.2: Minimal external command taking into account defaults
1 # ! / bin / sh
2 export MOPAC_LICENSE=$HOME/ mopac2009
3
4 export MOPAC_MOP=" mopac_input .mop"
5
6 i n j e c t o r $1
7 i f ["$1 " −ne "0"]
8 then
9 $MOPAC_LICENSE/MOPAC2009. exe $MOPAC_MOP

10 extractor $1
11 f i t t e r $1
12 f i

Three files are needed:

coefficients template: The COEFS_TEMPLATE are used by injector
to build an external file with the semi empirical parameters fed by
GAFit.

BETAS H −6.173787
ZS H 1.188078
ALP H 2.882324
GSS H 12.848
USS C −52.028658
UPP C −39.614239
BETAS C −15.715783
BETAP C −7.719283
ZS C 1.808665
ZP C 1.685116
ALP C 2.648274
GSS C 12.23
GSP C 11.47
GPP C 11.08
GP2 C 9.84
HSP C 2.43

This is our chromosoma using the above coefficients template:

BETAS H ZS H ALP H GSS H HSP C

MOPAC template: The MOPAC_TEMPLATE are used by injector to
create the input file for MOPAC where each @ will be replaced with
a COEFS_TEMPLATE name.

MOPAC module 39

AM1 prec ise external=@ geo−ok nosym

H 0.00000000 +0 0.0000000 +0 0.0000000 +0 '
& 0.1275

C 1.09852142 +1 0.0000000 +0 0.0000000 +0 1 0 0 '
&−0.1565

C 1.33416836 +1 123.1900576 +1 0.0000000 +0 2 1 0 '
&−0.0994

H 1.09879509 +1 115.3226363 +1 179.9929115 +1 2 1 3 '
& 0.1270

H 1.10533055 +1 122.1640414 +1 179.9944757 +1 3 2 1 '
& 0.1514

C 1.41933576 +1 114.5208739 +1 179.9977508 +1 3 5 2 '
&−0.1114

N 1.16399609 +1 179.1128557 +1 1.2752342 +1 6 3 5 '
&−0.0387

oldgeo AM1 prec ise external=@ force geo−ok nosym

AM1 prec ise ts external=@ geo−ok nosym

C 0.000000 0 0.000000 0 0.000000 0 0 0 0
C 1.310566 1 0.000000 0 0.000000 0 1 0 0
C 2.179061 1 104.132782 1 0.000000 0 2 1 0
N 1.160916 1 160.493759 1 0.000000 1 3 2 1
H 1.076805 1 126.972862 1 0.000000 1 1 2 3
H 1.084538 1 114.088127 1 180.000000 1 1 2 3
H 1.208813 1 35.831474 1 180.000000 1 2 3 4

In the example, there are three chained calculations (reactive opti-
mization, frequencies calculation with the reactive optimized geome-
try and a transition state search).

bounds.txt: The bounds.txt file especifies the boundaries of the semiem-
pirical parameters.

Lower l imit , upper l imit , parameter type
−5.5564 −6.791 9

1.0692 1.306 9
2.5940 3.170 9

11.5632 14.132 9
−46.8257 −57.231 9
−35.6528 −43.575 9
−14.1442 −17.287 9
−6.9473 −8.491 9

1.6277 1.989 9
1.5166 1.853 9
2.3834 2.913 9

11.007 13.453 9
10.323 12.617 9

9.972 12.188 9
8.856 10.824 9
2.187 2.673 9

The type of extracted data are shown in the Table 4.1.

40 MOPAC module

Table 4.1: Extracted data

mnemonic code data fields data

HEATFCAL 0 1 Heat of formation in kcal/mol
HEATFJUL 1 1 Heat of formation in kJ/mol
NUMATOMS 2 1 Number of atoms
CARTESIAN 3 5 Sequence number in structure, atom

symbol and x, y, z coordinates
NUMFREQ 4 1 Number of total frequencies
FREQUENCIES 5 2 Sequence number and value in cm−1

CALCPERIND 6 1 Total number of different calculations
per coefficient vector

GRADIENTS 7 1 Gradients, x,y,z components per atom
NUMCONF 8 1 Number of states considered in one-

electron excitations
DIPXYZ 9 4 Components x, y, z of the effect of

dipole operator on states
EEL 10 3 Energies on states

This data is compared to reference values in the file conditions.txt. The
fit is calculated, taking into account the weight, as:

fit =


∑

[Referencei −Calculatedi]2 Weighti if calculation is done.

penalty if calculation fails.

fitter conditions

The conditions that can be used to compare are shown in Table 4.2 and
established in the File 4.3.

File 4.3: conditions.txt
del t 1 2 100.6 0.1
frequency 2 15 3271.0 1e−4
distance 3 1 7 3.70 100.0
penalty 1e10

This interface could be used as a template or code guide to build other
different module to face a new external program of interest.

However, in the MOPAC specific case, this approach presents some
problems:

• If MOPAC fails, all the process tree could be hang and it is necessary
to kill manually the problematic MOPAC process.

• If a file contains some calculations and one of this fail, all the rest
fail or have no valid data.

• The design were to process many templates solely by one MOPAC
process. But due the problems shown above, it only could process one
template at time.

4.1. Enhanced interface with MOPAC 41

Table 4.2: Fitter conditions

Condition data
fields data comment

heat 3 calcA value weight Heat of formation of calculus calcA
delta 4 calcA calcB value weight Difference between heat of formation of cal-

culation calcA and calcB. ∆ = (calcA −
calcB) in kcal/mol

frequency 4 calcA N value weight Frequency number N of the calculation calcA
gradient 4 calcA N value weight Gradient number N of the calculation calcA. N

varies from 1 to 3*NUMATOMS.
distance 5 calcA atom1 atom2 value weight Distance between atom1 and atom2 into calcu-

lation calcA
angle 6 calcA atom1 atom2 atom3 value weight Angle between atom1, atom2 and atom3 into

calculation calcA
dihedral 7 calcA atom1 atom2 atom3 atom4 value weight Dihedral angle between atom1, atom2, atom3,

and atom4 into calculation calcA
dipx 4 calcA state value weight Component x of the effect of dipole operator on

state into calculation calcA
dipy 4 calcA state value weight Component y of the effect of dipole operator on

state into calculation calcA
dipz 4 calcA state value weight Component z of the effect of dipole operator on

state into calculation calcA
eel 5 calcA state order value weight State energy into calculation calcA. State: 1 for

singlet, 2 for doublet and 3 for triplet. Order is
the order in the listing (eg. 1 for first singlet,
2 for second singlet and so on). If there are no
data for this state, a penalty is applied.

penalty 1 penalty Fit if any of the MOPAC calculations failed for
a given coefficient vector. If not set, default
value is 1.0e10.

4.1 Enhanced interface with MOPAC

To resolve the problems shown, an enhanced interface was developed with
a new tool: shepherd.

shepherd can:

• Execute, control and maintain a optimal number of MOPAC pro-
cesses near to the computing resources number –cpus, cores . . . – if
the output file will be written in a local storage resource. This only works well using a

local storage, not shared re-
sources like NFS.

• Detect and kill hung MOPAC processes automatically.

• Create fake output files for the killed MOPAC processes.

• Gather all output files, including fakes, building a unique file to be
processed by extractor.

The external command, simplified using default values, are shown in
File 4.4.

File 4.4: Simplified external command to use with shepherd
1 # ! / bin / sh
2 export MOPAC_LICENSE=$HOME/ mopac2009
3
4 i n j e c t o r $1 bulk
5 i f ["$1 " −ne "0"]
6 then
7 shepherd
8 extractor $1
9 f i t t e r $1

10 f i

42 MOPAC module

To use this new interface, you only need replace the call to MOPAC
with a call to shepherd in the script. Compare File 4.2 with File 4.4.

5CHARMM module

This module interface GAFit with the CHARMM program in order to
facilitate direct parameterizations of force fields.

43

6mvariable module

GAFit can also be employed to fit a user-defined multivariable function
to a set of data points using the mvariable module.

45

7Simple configuration

Any sufficiently advanced bug is
indistinguishable from a feature.

Rich Kulawiec

There are five simple configuration modules. The parameters and op-
tions for simple configurations are sumarized in Table 15.2.

The folder simple-mod-examples contains the examples from Simpli-
fiedUserGuide.pdf.

7.1 Intermolecular simple configuration

File 7.1: Intermolecular job.txt file.

[Job]
Evaluations : 1000000
Application : intermolecular
Potential : 2

File 7.1 shows a simple configuration example.

7.2 Mopac simple configuration

Two MOPAC examples are developed in Sections 12 and 13. The interface
is explained in Sections 21 and 22.

The module follows the MOPAC enhanced interface. The shell script
needed for the interface is created on the fly by the module.

File 7.2: Mopac job.txt file.
[Job]
Evaluations : 100000
Application : MOPAC
Exec : / usr / programs / mopac /MOPAC2016. exe

File 7.2 shows a simple configuration example.

47

48 Simple configuration

7.3 Charmm simple configuration

The CHARMM interface is explained in Section 25.

File 7.3: Charmm job.txt file.
[Job]
Evaluations : 50000
Application : CHARMM
Exec : / usr / programs /charmm/ exec / gnu /charmm
Refgeom : geo−1.crd
Calculated energies : 1 3

7.4 Mvariable simple configuration

The mvariable module is explained in Section 26.

File 7.4: Mvariable job.txt file.
[Job]
evaluations : 100000
appl icat ion : mvariable

. . .

7.5 Generic simple configuration

The mvariable module is explained in Section 27.

File 7.5: Generic job.txt file.
[job]
evaluations : 5000
appl icat ion : generic
ncores : 1
executable : . / gener i cscr ip t . sh
template : template
reference values : reference . values

Part II

Step by step examples

49

8The examples

There are two ways of constructing a
software design: One way is to make it
so simple that there are obviously no
deficiencies, and the other way is to
make it so complicated that there are no
obvious deficiencies. The first method is
far more difficult.

Sir Charles Antony Richard Hoare

The configuration, compilation and installation phases are done by the
GNU autotools utilities:

tar -xvzf gafit-VERSION.tar.gz
cd gafit-VERSION
./configure
make

The source tree from the distribution package –gafit-VERSION.tar.gz–
are shown in Figure 8.1.

In this case, you can use the examples directly in their folder: There is
a handy “make test” makefile target ready to run the example:

make test

If you install GAFit:

make install

the default installed tree is shown in Figure 8.2.
Once installed, take into account that:

$HOME/bin: where the binaries are installed.

51

52 The examples

gafit-VERSION

doc
src

advanced-mod-examples

forcefield

charmm

intermolecular

analytical

n2n2
uracil

...

...

Figure 8.1: Source tree from distribution package, gafit-VERSION.tar.gz

$HOME/share: where the examples, documentation and other files are
installed.

You can run the examples expanding the compressed tar.gz data file if
present and running:

$HOME/bin/gafit

You also must copy in the folder other binaries needed from $HOME-
/bin if you have "." included in your PATH variable, or better, set the envi-
ronment variable PATH pointing to $HOME/bin:

export PATH=$PATH:$HOME/bin/gafit

The examples in this part are taken from the advanced-mod-examples
folder.

The examples 53

$HOME

bin

gafit

needle
shepherd
...

share

doc

usermanual.pdf
GAFitSimplifiedUserGuide.pdf

advanced-mod-examples

forcefield

charmm

intermolecular

analytical

n2n2
uracil

simple-mod-examples

charmm
intermolecular
mopac

mvariable
...

...

Figure 8.2: Installed tree into $HOME

9Xe + [Li(Uracil)]+

As a rule, software systems do not work
well until they have been used, and have
failed repeatedly, in real applications.

Dave Parnas

H12

C1 C6

H11

C5 O8 Li9
+ Xe14

N4

H10

C3

O7

N2H13

We shall use the Xe + [Li(Uracil)]+ system as an example. In this
example, we fit one of the potentials shown in Table 17.2 to the interaction
energies between Xe and the [Li(Uracil)]+ complex, computed by ab initio
calculations.

These files are included in the intermolecular/uracil folder. You can
run it typing:

$ tar -xvzf uracil.tgz
$ gafit > output.txt

Once these commands are employed, some files are extracted and GAFit
is run.

9.1 Preparing input files

The input file coord.molden contains the set of geometries employed in the
ab initio calculations to obtain the interaction energies. The geometries

55

56 Xe + [Li(Uracil)]+

can be viewed using molden (see Fig. 9.1):

$ molden coord.molden

Figure 9.1: Viewing the points with Molden.

The very first lines of this file are shown in File 9.1.

File 9.1: coord.molden geometries file first lines.
14

C 0.000000 0.000000 0.000000
N 0.000000 0.000000 1.354549
C 1.152143 0.000000 2.127502
N 2.311655 0.000000 1.343162
C 2.393034 0.000000 −0.016579
C 1.152592 0.000000 −0.718330
O 1.169220 0.000000 3.330930
O 3.523582 0.000000 −0.559509
Li 4.968935 0.000000 −1.513449
H 3.175968 0.000000 1.870824
H 1.142155 0.000000 −1.793856
H −0.971622 0.000000 −0.471648
H −0.866367 0.000000 1.874333
Xe 17.488048 0.000000 −9.776123
14

C 0.000000 0.000000 0.000000
N 0.000000 0.000000 1.354549
C 1.152143 0.000000 2.127502
N 2.311655 0.000000 1.343162
C 2.393034 0.000000 −0.016579
[. . .]

Also, we need the interaction energies corresponding to each geometry
in coord.molden. These energies are used to fit our model potential and
they are listed in the file energies.txt (see File 9.2). This file follows the
specifications described in 17.1.

File 9.2: energies.txt file.
−0.006436 1
−0.012603 1
−0.024660 1
−0.053662 1

9.1. Preparing input files 57

−0.151027 1
−0.208324 1
−0.298249 1
−0.443987 1
−0.576097 1
−0.762092 1
−1.031527 1
−1.431174 1
−2.022694 1
−2.554913 1
−3.208230 1
−3.966854 1
−4.767595 1
−5.448579 1
−5.645469 1
−5.658691 1
−5.387761 1
−4.692701 1
−3.377588 1
−1.167944 1
2.322455 1
7.633202 1
15.516838 1
27.007602 1
66.979582 1
146.056144 1
297.072019 1

There are two columns, the first one is the interaction energies and the
second one is the weight of each geometry. The order must be the same of
the geometries file.

Taking into account that some of the atoms in the [Li(Uracil)]+complex
(Fragment A below) can be equivalent, we have to determine the different
atom types. To achieve this, we shall use the needle tool–see 3.4–.

$ needle -p 13 -o coord.molden

[...]

Fragment A atoms:13
There are 14 different atom types. Fragment A:13,
Fragment B:1, Common types:0
Total diff interactions: a vector of 13 coefs, X(k)
Vector Atom2Type:
Atom2Type(i)={1 2 3 4 5 6 7 8 9 10 11 12 13 14 }
two files created: atom2type.txt and charges.txt

When we run needle using the -p and -o switches, we have to provide
the number of atoms present in fragment A. Additionally, with these op-
tions needle creates the atom2type.txt –File 9.3– and charges.txt–File 9.4–
files (see section 17.1). As seen above, the output informs that, in this case,
there are no equivalent atoms. In our example, there are 14 different atom
types, and 13 different interactions between fragment A and fragment B
(Xe)

File 9.3: atom2type.txt file.
13 14

1 C 1
2 N 2
3 C 3
4 N 4
5 C 5
6 C 6
7 O 7

58 Xe + [Li(Uracil)]+

8 O 8
9 LI 9

10 H 10
11 H 11
12 H 12
13 H 13
14 XE 14

The number of different types of atoms determines the charges.txt file
with a line per atom type. The generated charges.txt file is a dummy file to
be used as a template and you need to edit it, if you use a potential with
charges.

File 9.4: charges.txt file.
1 0.000000
2 0.000000
3 0.000000
4 0.000000
5 0.000000
6 0.000000
7 0.000000
8 0.000000
9 0.000000

10 0.000000
11 0.000000
12 0.000000
13 0.000000
14 0.000000

We shall use the implemented potential number 1 with four coefficients
–from Table 17.2–.

V = Ae−Br +
C

rD

So we need a file with the lower and upper limits of the coefficients
–the bounds–. Here we can specify the same limits for all interactions
or different limits per each interaction. We choose the former option, as
shown in File 9.5. The first and third coefficients for each interaction are
real, and the second and fourth, integers.

File 9.5: bounds.txt file.
TEXT TEXT TEXT TEXT

0. 1000000. 9
0 . 10.0 0

−1500. 0 . 9
4.0 8.0 0

Next, we have to edit the job.txt file to configure GAFit. The file job.txt
that comes with the uracil example is the one shown in the File 9.61.

File 9.6: job.txt file.
[parameters]
population : 100
crossover rate : 0.75
blx_alpha : 0.5
mutation rate : 0.1
e l i t i sm : yes
tournament s ize : 5
crossover : sbx
mutation : sigma
sigma : 0.1
d i rec t i on : min

[job]

1You safely can delete the entire [parameters] section. All lines are default values.

9.2. Running the example 59

type : external auto
command: . / external−intpot . sh
runs : 1
evaluations : 5000
Geometries : coord . molden
Energies : energies . txt
Atom2type : atom2type . txt
Bounds : bounds . txt
Charges : charges . txt
Potential : 1
All c o e f f i c i e n t s : no
auto weights : no
f i t t i n g : r e la t i ve
tes t : 1488732015

[print]
geometries : no
runs : no

job.txt is split in some sections, the text between square brackets, with
options as key-value pairs.

The different sections and their possible options are discussed in sec-
tion 15. In the [job] section we have potential: 1 and All coefficients:
no.

As you can see in Table 17.2, this potential function has a total of 4
coefficients and we want the same bounds (All coefficients: no) for all
two-body interactions. This is specified in the bounds.txt shown in File 9.5,
with only 4 lower and 4 upper bounds for the coefficients.

The last column of this file is employed to specify whether the coeffi-
cient is an integer, a real number or a real number with some fixed decimal
places2.

9.2 Running the example

If you run GAFit from the folder where all the above files are located you
get the output file shown in Files 9.7, 9.8, 9.9, 9.10 and 9.11.

$ gafit > output.txt

As we mentioned above, there are 13 different two-body interactions
with four coefficients each one, so we have a vector of 52 coefficients to
optimize. Two of the coefficients, B and D, are integer, as indicated in File
9.5.

2The few decimal places, the few the search domain. This speed up calculations

60 Xe + [Li(Uracil)]+

File 9.7: Uracil example output: output.txt (i)
+−−+
| GAFit 1.3d Build :314 **TEST MODE, seed :1488732015 ** |
[. .]

+−−+

INTERMOLECULAR MODULE
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Coordinates : [coord . molden]
Energies : [energies . txt]
Atom2type : [atom2type . txt]
Bounds : [bounds . txt]
Charges : [charges . txt]
Potential read : 1
All c o e f f i c i e n t s : no , Read and repeat subset
Interact ions types : inter
Fit t ing : r e la t i ve

PRINT OPTIONS
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

geometries no
analyt i ca l no

INTERACTIONS
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Dif ferent interact ion types : 13 ,

with 4 c o e f f i c i e n t s each ,
so , we need a 52 elements vector .
Choosen potent ia l=1

Fragment A atoms : 13 , Fragment B atoms : 1
Fragment A types : 13 , Fragment B types : 1

Reading bounds for 4 c o e f f i c i e n t s

A +0.00000 − +1000000.00000 (real)
B +0.00000 − +10.00000 (integer)
C −1500.00000 − +0.00000 (real)
D +4.00000 − +8.00000 (integer)

52 BOUNDS VECTOR:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

INTERACTION TYPE 1
−−−−−−−−−−−−−−−−−−−−−−
C(1)−Xe(14)

Coe f f i c i ents :
1 A +0.00000 − +1000000.00000 (real)
2 B +0.00000 − +10.00000 (integer)
3 C −1500.00000 − +0.00000 (real)
4 D +4.00000 − +8.00000 (integer)

Settings for job
Choosen potential

Output options

Interactions info

Bounds read from
bounds.txt file

First interaction type

File 9.8: Uracil example output: output.txt (ii)
INTERACTION TYPE 2
−−−−−−−−−−−−−−−−−−−−−−
N(2)−Xe(14)

Coe f f i c i ents :
5 A +0.00000 − +1000000.00000 (real)
6 B +0.00000 − +10.00000 (integer)
7 C −1500.00000 − +0.00000 (real)
8 D +4.00000 − +8.00000 (integer)

INTERACTION TYPE 3
−−−−−−−−−−−−−−−−−−−−−−
C(3)−Xe(14)

Coe f f i c i ents :
9 A +0.00000 − +1000000.00000 (real)

10 B +0.00000 − +10.00000 (integer)
11 C −1500.00000 − +0.00000 (real)
12 D +4.00000 − +8.00000 (integer)

INTERACTION TYPE 4
−−−−−−−−−−−−−−−−−−−−−−
N(4)−Xe(14)

Coe f f i c i ents :
13 A +0.00000 − +1000000.00000 (real)
14 B +0.00000 − +10.00000 (integer)
15 C −1500.00000 − +0.00000 (real)
16 D +4.00000 − +8.00000 (integer)

INTERACTION TYPE 5
−−−−−−−−−−−−−−−−−−−−−−
C(5)−Xe(14)

9.2. Running the example 61

Coe f f i c i ents :
17 A +0.00000 − +1000000.00000 (real)
18 B +0.00000 − +10.00000 (integer)
19 C −1500.00000 − +0.00000 (real)
20 D +4.00000 − +8.00000 (integer)

INTERACTION TYPE 6
−−−−−−−−−−−−−−−−−−−−−−
C(6)−Xe(14)

Coe f f i c i ents :
21 A +0.00000 − +1000000.00000 (real)
22 B +0.00000 − +10.00000 (integer)
23 C −1500.00000 − +0.00000 (real)
24 D +4.00000 − +8.00000 (integer)

INTERACTION TYPE 7
−−−−−−−−−−−−−−−−−−−−−−
O(7)−Xe(14)

Coe f f i c i ents :
25 A +0.00000 − +1000000.00000 (real)
26 B +0.00000 − +10.00000 (integer)
27 C −1500.00000 − +0.00000 (real)
28 D +4.00000 − +8.00000 (integer)

INTERACTION TYPE 8
−−−−−−−−−−−−−−−−−−−−−−
O(8)−Xe(14)

Coe f f i c i ents :
29 A +0.00000 − +1000000.00000 (real)
30 B +0.00000 − +10.00000 (integer)
31 C −1500.00000 − +0.00000 (real)
32 D +4.00000 − +8.00000 (integer)

INTERACTION TYPE 9
−−−−−−−−−−−−−−−−−−−−−−
Li (9)−Xe(14)

Coe f f i c i ents :
33 A +0.00000 − +1000000.00000 (real)
34 B +0.00000 − +10.00000 (integer)
35 C −1500.00000 − +0.00000 (real)
36 D +4.00000 − +8.00000 (integer)

INTERACTION TYPE 10
−−−−−−−−−−−−−−−−−−−−−−
H(10)−Xe(14)

Coe f f i c i ents :
37 A +0.00000 − +1000000.00000 (real)
38 B +0.00000 − +10.00000 (integer)
39 C −1500.00000 − +0.00000 (real)
40 D +4.00000 − +8.00000 (integer)

INTERACTION TYPE 11
−−−−−−−−−−−−−−−−−−−−−−
H(11)−Xe(14)

Coe f f i c i ents :
41 A +0.00000 − +1000000.00000 (real)
42 B +0.00000 − +10.00000 (integer)
43 C −1500.00000 − +0.00000 (real)
44 D +4.00000 − +8.00000 (integer)

INTERACTION TYPE 12
−−−−−−−−−−−−−−−−−−−−−−
H(12)−Xe(14)

Coe f f i c i ents :
45 A +0.00000 − +1000000.00000 (real)
46 B +0.00000 − +10.00000 (integer)
47 C −1500.00000 − +0.00000 (real)
48 D +4.00000 − +8.00000 (integer)

In the output, next lines explain how the interactions are and their per
coefficient bounds. In this case, the bounds are equal for any interaction.

62 Xe + [Li(Uracil)]+

File 9.9: Uracil example output: output.txt (iii)
INTERACTION TYPE 13
−−−−−−−−−−−−−−−−−−−−−−
H(13)−Xe(14)

Coe f f i c i ents :
49 A +0.00000 − +1000000.00000 (real)
50 B +0.00000 − +10.00000 (integer)
51 C −1500.00000 − +0.00000 (real)
52 D +4.00000 − +8.00000 (integer)

+−−+
| Settings for GA |
+−−+
| runs : 1 |
| evaluations : 500 |
| population : 100 |
| crossover : sbx |
| cossover rate : 0.750000 |
| blx_alpha : 0.500000 |
| eta_sbx : 2.000000 |
| mutation : sigma |
| mutation rate : 0.100000 |
| sigma : 0.100000 |
| integer mutation : random |
| el i t i sm : yes |
| tournament s ize : 5 |
| direc t i on : min |
+−−+
| Settings for job |
+−−+
| Command : [. / external−intpot . sh] |
| Bounds : [bounds . txt . internal] |
| External input : [intpot . input] |
| External f i t : [intpot . f i t] |
| Total c o e f f i c i e n t s : 52 |
| Print options : runs yes , ga set t ings yes |
+−−+
| run : 1 |
| TEST MODE seed : 1488732015 |
+−−+

Eval . Best f i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
100 22.5565
300 19.0732
500 7.59589
500 7.59589

#
#Results
#

INTERACTION TYPE 1
−−−−−−−−−−−−−−−−−−−−−−
C(1)−Xe(14)

Coe f f i c i ents :
1 A +74540.0217736325
2 B +5.0000000000
3 C −845.7260791565
4 D +8.0000000000

INTERACTION TYPE 2
−−−−−−−−−−−−−−−−−−−−−−
N(2)−Xe(14)

Coe f f i c i ents :
5 A +543556.0785643021
6 B +10.0000000000
7 C −805.1226735632
8 D +5.0000000000

Used random seed

Here begins results

Second interaction
type results

The calculations employ random numbers, so if you take the same seed
used in a given run, you will reproduce the whole output. You must ac-
tivate the option print runs to view it in output. In any case, you can
retrieve the seed in the file stats.txt. The details are in Section 15.2 and
it is useful for testing and debugging purposes. Each interaction with the
coefficients found are printed. This is the information saved in the file
best.txt.

9.2. Running the example 63

File 9.10: Uracil example output: output.txt (iv)
INTERACTION TYPE 3
−−−−−−−−−−−−−−−−−−−−−−
C(3)−Xe(14)

Coe f f i c i ents :
9 A +501043.7557968706

10 B +10.0000000000
11 C −1155.6351484105
12 D +8.0000000000

INTERACTION TYPE 4
−−−−−−−−−−−−−−−−−−−−−−
N(4)−Xe(14)

Coe f f i c i ents :
13 A +158499.3083434265
14 B +5.0000000000
15 C −1350.4319505465
16 D +8.0000000000

INTERACTION TYPE 5
−−−−−−−−−−−−−−−−−−−−−−
C(5)−Xe(14)

Coe f f i c i ents :
17 A +430213.6165002815
18 B +2.0000000000
19 C −465.2443965131
20 D +4.0000000000

INTERACTION TYPE 6
−−−−−−−−−−−−−−−−−−−−−−
C(6)−Xe(14)

Coe f f i c i ents :
21 A +26522.1955712938
22 B +4.0000000000
23 C −771.4668786474
24 D +6.0000000000

INTERACTION TYPE 7
−−−−−−−−−−−−−−−−−−−−−−
O(7)−Xe(14)

Coe f f i c i ents :
25 A +987791.4463235690
26 B +3.0000000000
27 C −868.7300231100
28 D +4.0000000000

INTERACTION TYPE 8
−−−−−−−−−−−−−−−−−−−−−−
O(8)−Xe(14)

Coe f f i c i ents :
29 A +496941.4962879005
30 B +5.0000000000
31 C −1262.0250218901
32 D +8.0000000000

INTERACTION TYPE 9
−−−−−−−−−−−−−−−−−−−−−−
Li (9)−Xe(14)

Coe f f i c i ents :
33 A +882006.9378573116
34 B +5.0000000000
35 C −1270.6122879899
36 D +5.0000000000

INTERACTION TYPE 10
−−−−−−−−−−−−−−−−−−−−−−
H(10)−Xe(14)

Coe f f i c i ents :
37 A +302068.4610048971
38 B +8.0000000000
39 C −1051.2509426219
40 D +7.0000000000

INTERACTION TYPE 11
−−−−−−−−−−−−−−−−−−−−−−
H(11)−Xe(14)

Coe f f i c i ents :
41 A +155814.6940483026
42 B +10.0000000000
43 C −324.8565324163
44 D +5.0000000000

INTERACTION TYPE 12
−−−−−−−−−−−−−−−−−−−−−−

64 Xe + [Li(Uracil)]+

H(12)−Xe(14)
Coe f f i c i ents :

45 A +52853.6256781471
46 B +7.0000000000
47 C −1500.0000000000
48 D +7.0000000000

Finally, an objective function is calculated for each geometry:

Difference =
(Calculated−Energy)

Energy ∗ 100

Where Calculated is the energy calculated using the best.txt coefficients,
and the geometry energy –Energy– from the file energies.txt.

File 9.11: Uracil example output: output.txt (v)

INTERACTION TYPE 13
−−−−−−−−−−−−−−−−−−−−−−
H(13)−Xe(14)

Coe f f i c i ents :
49 A +950049.8248932150
50 B +9.0000000000
51 C −787.5269561135
52 D +7.0000000000

#
#Evaluation
#
#Geometry Energy Calculated Dif ference Weight
#======== ====== ========== ========== ======

1 −0.006436000000 −0.011050577330 +71.70 % +1.00
2 −0.012603000000 −0.017997557493 +42.80 % +1.00
3 −0.024660000000 −0.031867370776 +29.23 % +1.00
4 −0.053662000000 −0.063991213263 +19.25 % +1.00
5 −0.151027000000 −0.158047898351 +4.65 % +1.00
6 −0.208324000000 −0.207739342432 −0.28 % +1.00
7 −0.298249000000 −0.279542061446 −6.27 % +1.00
8 −0.443987000000 −0.385691828283 −13.13 % +1.00
9 −0.576097000000 −0.473617455187 −17.79 % +1.00

10 −0.762092000000 −0.586861719042 −22.99 % +1.00
11 −1.031527000000 −0.733570004510 −28.89 % +1.00
12 −1.431174000000 −0.924749242688 −35.39 % +1.00
13 −2.022694000000 −1.175614113636 −41.88 % +1.00
14 −2.554913000000 −1.386332740552 −45.74 % +1.00
15 −3.208230000000 −1.641405665602 −48.84 % +1.00
16 −3.966854000000 −1.950496945548 −50.83 % +1.00
17 −4.767595000000 −2.321014222875 −51.32 % +1.00
18 −5.448579000000 −2.744231792499 −49.63 % +1.00
19 −5.645469000000 −2.958529426817 −47.59 % +1.00
20 −5.658691000000 −3.149037786327 −44.35 % +1.00
21 −5.387761000000 −3.274427021287 −39.22 % +1.00
22 −4.692701000000 −3.259569971701 −30.54 % +1.00
23 −3.377588000000 −2.971079070471 −12.04 % +1.00
24 −1.167944000000 −2.176024998738 +86.31 % +1.00
25 +2.322455000000 −0.472650935654 −120.35 % +1.00
26 +7.633202000000 +2.825651217629 −62.98 % +1.00
27 +15.516838000000 +8.883658156418 −42.75 % +1.00
28 +27.007602000000 +19.665205957558 −27.19 % +1.00
29 +66.979582000000 +70.789210814611 +5.69 % +1.00
30 +146.056144000000 +218.641328594868 +49.70 % +1.00
31 +297.072019000000 +634.044445712745 +113.43 % +1.00

Geometry fit evalua-
tion

9.3 Examining results

The best individual from the program run is stored in the file best.txt –
File 9.13–. You must save this file, because it is overwritten in each run,
and it is used to load coefficients by some tools. The last line of the fileThe file best.txt is overwritten

in each run shows the above objective function calculated with the best coefficients.
Executing the fitview tool in the same folder, it reads the configuration
and the best.txt file creating some useful graphs. See Section 3.10.

9.3. Examining results 65

File 9.12: 2body-type-1.plt
set terminal x11
set t i t l e " Interact ion type 1"
set xrange [0.500000:10.000000]
set xlabel "R"
set ylabel " Potential "
p lot "2body−type−1.dat " using 1:2 t i t l e "Ex : C (1)−Xe(14) " with l inespo ints
pause −1

Files 9.12 and 9.14 are the gnuplot commands and data file, repec-
tivelly, to plot Potential vs r for the interaction type 2 between C(1) and
Xe(14), Figure 9.2.

File 9.13: Uracil example best.txt
901608.806630330742
4.000000000000
−6.430323296743
5.000000000000
165595.867979834671
7.000000000000
−1138.239454060825
5.000000000000
565031.244248823496
5.000000000000
−215.144199774099
8.000000000000
462307.829517660779
8.000000000000
−70.773260147771
8.000000000000
662752.755474972306
2.000000000000
−311.802009422465
4.000000000000
819468.319292194792
10.000000000000
−1378.714903828626
5.000000000000
702730.873476595385
6.000000000000
−1068.294837888685
8.000000000000
270196.896241575596
9.000000000000
−1426.856074983300
5.000000000000
868175.125098152435
5.000000000000
−1499.764070025773
5.000000000000
321195.104213012499
9.000000000000
−293.802737729408
5.000000000000
211372.727365899016
3.000000000000
−562.671412678537
5.000000000000
93914.834234193142
6.000000000000
−9.016924216977
5.000000000000
520130.035980527289
2.000000000000
−886.907942598062
8.000000000000

Fitness : 4.53655

Result from evaluate
this coefficients set

A, B, C, D for interac-
tion type 1, C(1)-Xe(14)

In File 9.12 you can change, for example, set terminal x11 with set ter-
minal svg and add a line with set output "plot.svg". Next, you can run:

$ gnuplot 2body-type-1.plt

to obtain a svg graphic file named plot.svg like Figure 9.2.

66 Xe + [Li(Uracil)]+

File 9.14: 2body-type-1.dat
#
#INTERACTION TYPE 1
#−−−−−−−−−−−−−−−−−−−−−−
C(1)−Xe(14)
Coe f f i c i en ts :
1 A +901608.8066303307
2 B +4.0000000000
3 C −6.4303232967
4 D +5.0000000000
#
r V

+0.5000000000 +121813.7128684444
+0.5100000000 +117048.6583011130
+0.5200000000 +112469.0513077077
+0.5300000000 +108067.8097677045
+0.5400000000 +103838.1009140337
+0.5500000000 +99773.3361867638
+0.5600000000 +95867.1654688832
+0.5700000000 +92113.4708844208

[. . .]

Figure 9.2: Interaction type 1 plot.

One of the plots produced by fitview is the evaluation of the fit, that
can help you to adjust the geometry weights, Figure 9.3.

9.3. Examining results 67

Figure 9.3: General evaluation plot.

10User designed analytical
expressions

The only way for errors to occur in a
program is by being put there by the
author. No other mechanisms are
known. Programs can’t acquire bugs by
sitting around with other buggy
programs.

Harlan D. Mills

H12

C1 C6

H11

C5 O8 Li9
+ Xe14

N4

H10

C3

O7

N2H13

Instead of using a potential function already implemented in GAFit,
the user can type manually a new analytical expression directly in the
job.txt file. We shall use the previous example, Xe + [Li(Uracil)]+ sys-
tem, taken from [Roberto Rodriguez-Fernandez, Saulo A. Vazquez, and
Emilio Martinez-Nunez. “Collision-induced dissociation mechanisms of
[Li(uracil)]+”. In: Phys. Chem. Chem. Phys. 15 (20 2013), pp. 7628–
7637. DOI: 10.1039/C3CP50564B].

In this example, we fit an analytical expression to the interaction ener-
gies between Xe and the [Li(Uracil)]+complex, computed by ab initio cal-
culations. Next, it is shown how to use this feature using the previous
example.

69

https://doi.org/10.1039/C3CP50564B

70 User designed analytical expressions

10.1 Preparing input files

The files for this example are in the folder intermolecular/analytical. The
input files are the same than the previous one, except for the job.txt file
–File 10.11– which is the unique file to modify.

File 10.1: Uracil example with an analytical expression
[parameters]
population : 100
crossover rate : 0.75
blx_alpha : 0.5
mutation rate : 0.1
e l i t i sm : yes
tournament s ize : 5
crossover : sbx
mutation : sigma
sigma : 0.1
d i rec t i on : min

[job]
type : external auto
command: . / external−intpot . sh
runs : 1
evaluations : 500
Geometries : coord . molden
Energies : energies . txt
Atom2type : atom2types . txt
Bounds : bounds . txt
Charges : charges . txt
Potential : 0
All c o e f f i c i e n t s : no
f i t t i n g : r e la t i ve
tes t : 1488732015

[print]
geometries : no
runs : no

[analyt i ca l]
expression : potent ia l 3
distance : d i s t
potent ia l : pot
c o e f f i c i e n t s : a , b , c1 , c2 , d1 , d2 , e1 , e2

[potent ia l 1]
V=A*EXP(−B*R)+C/R**D;

[potent ia l 2]
v=a*exp(−b*r)+c / r **d+e / r ** f ;

[potent ia l 3]
v1=a*exp(−b* d is t) ;
v2=c1 / d i s t **c2 ;
v3=d1 / d i s t **d2 ;
v4=e1 / d i s t **e2 ;
pot=v1+v2+v3+v4

Analytical expression
as a potential

Analytical section

Analytical expressions
for internal potentials
1, 2 and 3 from Table
17.2

Potential type, according to Table 17.2, must be changed to 0. Next we
have to write a new section, [analytical], with some configuration data:

expression: This is the expression employed for the potential. In this
example it is configured as potential 3.

distance: Name of the variable distance –r in the formula from Table
17.2–. dist in the example.

potential: Name of the variable potential energy. In the example pot.

coefficients: The names of the coefficients to be optimized. In the exam-
ple a, b, c1, c2, d1, d2, e1 and e2.

1As in previous section, you safely can delete the entire [parameters] section.

10.1. Preparing input files 71

If you want to use other potential like potential 1 or potential 2 you
must change the whole [analytical] section accordingly.

You can test the job.txt file using ufpu –section 20.3– and type some
values to distance and coefficients and check the calculated potential.

$ ufpu
uFpu v0.2 (c)GAFit toolkit - 2013

expression name: "potential 3"
potential: pot
distance: dist
coefficients: a, b, c1, c2, d1, d2, e1, e2

Expression found:

v1 = a*exp(-b*dist);
v2 = c1/dist**c2;
v3 = d1/dist**d2;
v4 = e1/dist**e2;
pot = v1+v2+v3+v4

Variables found in expression: v1 a b dist v2 c1 c2 v3 d1 d2 v4 e1 e2 pot
Expression code OK
pot index 13
dist index 3
8 coefficients found

INPUT
distance variable (dist)=1
coefficient a=1
coefficient b=1
coefficient c1=1
coefficient c2=1
coefficient d1=1
coefficient d2=1
coefficient e1=1
coefficient e2=1

After run: Memory (total used 27) v1=0.367879 a=1 b=1 dist=1 v2=1 c1=1 c2=1 v3=1 d1=1
d2=1 v4=1 e1=1 e2=1 pot=3.36788

RESULT POTENTIAL:3.367879

Press ’q’/INTRO to quit, another key/INTRO to repeat

The bytecode result of compiling the analytical expression is shown in
File 10.2.

The resulting job.txt is shown in File 10.3 after adjusting the geome-
tries and atom2type files. Also a bounds.txt file, with 8 bounds like the
one included in the example, must be used.

72 User designed analytical expressions

File 10.2: Asembler bytecode produced
; v1 :0
; a :1
; b :2
; d i s t :3
; v2 :4
; c1 :5
; c2 :6
; v3 :7
; d1 :8
; d2 :9
; v4 :10
; e1 :11
; e2 :12
; pot :13
apush 0
apush 1
apush 2
neg
apush 3
mult
exp
mult
store
apush 4
apush 5
apush 3
apush 6
pow
div
store
apush 7
apush 8
apush 3
apush 9
pow
div
store
apush 10
apush 11
apush 3
apush 12
pow
div
store
apush 13
apush 0
apush 4
add
apush 7
add
apush 10
add
store

Where each variable is
on the memory pool.
Figure 19.3

Program to calculate
the expression

10.2. Running and examining results 73

File 10.3: Analytical expression job
[job]
type : external auto
command: . / external−intpot . sh
geometries : coord . molden
atom2type : atom2types . txt
potent ia l : 0

[analyt i ca l]
c o e f f i c i e n t s : a , b , c1 , c2 , d1 , d2 , e1 , e2
distance : d i s t
expression : th is i s the analyt i ca l expression
potent ia l : pot

[parameters]

[print]

[th is i s the analyt i ca l expression]
v1=a*exp(−b* d is t) ;
v2=c1 / d i s t **c2 ;
v3=d1 / d i s t **d2 ;
v4=e1 / d i s t **e2 ;
pot=v1+v2+v3+v4

Analytical expression
named section

Analytical expression

File 10.4: Analytical expression job output
[. . .]

INTERMOLECULAR MODULE
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Coordinates : [coord . molden]
Energies : [energies . txt]
Atom2type : [atom2types . txt]
Bounds : [bounds . txt]
Charges : [charges . txt]
Potential read : Analytical expression
All c o e f f i c i e n t s : no , Read and repeat subset
Interact ions types : inter
Fit t ing : r e la t i ve

PRINT OPTIONS
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

geometries no
analyt i ca l yes

Analytical expression
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
expression name: " potent ia l 3"
potent ia l : pot
distance : d i s t
c o e f f i c i e n t s : a , b , c1 , c2 , d1 , d2 , e1 , e2

Expression found :

v1 = a*exp(−b* d is t) ;
v2 = c1 / d i s t **c2 ;
v3 = d1 / d i s t **d2 ;
v4 = e1 / d i s t **e2 ;
pot = v1+v2+v3+v4

Variables found in expression : v1 a b d is t v2 c1 c2 v3 d1 d2 v4 e1 e2 pot
Expression code OK
pot index 13
d is t index 3
8 c o e f f i c i e n t s found

[. . .]

10.2 Running and examining results

The output is similar to the previous one –section 9–, except for the poten-
tial. Here we use the number 3 from Table 17.2 but coded as an analytical
expression.

11External Interface

The nice thing about standards is that
you have so many to choose from.

Andrew S. Tanenbaum

Before examining the MOPAC interface, we are going to study a sim-
ple case: fitting a polynomial to a set of values building a new module to
interface with.

11.1 Input files

Whe have some (x, f(x)) pair values shown in Table 11.1 to fit to a polyno-
mial of fifth degree. These value pairs are in the input File 11.1.

File 11.1: external.values file
−3 40
−2 0
−1 0
0 4
1 0
2 0
3 40

Obviously, the data fits to any polynomial who has roots at -2, -1, 1 and
2 like the one shown in Figure 11.1. Also, we need a bounds.txt file to fix
upper and lower limits as the included example in File 11.2. In this case,
we want integer values, so the righmost column is set to 0.

File 11.2: bounds.txt file
TEXT TEXT TEXT TEXT

−10. 10. 0
−10. 10.0 0
−10. 10. 0
−10. 10.0 0
−10. 10. 0

75

76 External Interface

Table 11.1: Example values to fit.

x f(x)
-3 40
-2 0
-1 0
0 4
1 0
2 0
3 40

Figure 11.1: Example polynomial plot

x

f(x)

f(x) = x4 − 5x2 + 4

An example is provided in File 11.4. This code inputs the coefficients
values provided by GAFit and the external known values –like the Table
11.1, File 11.1– to calculate a fit to a generic polynomial of degree n:

anx
n + an−1x

n−1 + ...+ a1x+ a0

The given test code supports both external and external bulk options
(Section 21.1): It can read to evaluate a set of coefficients –a individual– or
a whole population set of coefficients. To test each one change in File 11.3
–the job.txt file– the type of job.

11.1. Input files 77

File 11.3: External example job.txt: fitting a polynomial

[job]
runs : 1
evaluations : 50000
type : external bulk
command: . / external
c o e f f i c i e n t s : 5
external input : external . input
external f i t : external . f i t
bounds : bounds . txt

[print]
print runs : yes

[c o e f f i c i e n t names]
f i r s t
second
third
fourth
f i f t h

External command
Number of coeffients

Section to name coeffi-
cients

In the configuration file –job.txt, File 11.3– is included a [coefficients
names] section to name each coefficient with a user provided string. So,
a0 becomes first, a1 becomes second and so on.

The function to adjust is defined double func(double x, double a[],
int n) at lines 13-14, File 11.4. In this case is a polynomial of degree n.
You can use this code to adjust a different function.

File 11.4: external.c
1 / *
2 (c) GAFit t o o l k i t $Id : external . c 378 2019−12−04 17:52:09Z ro $
3 * /
4 # i f HAVE_CONFIG_H
5 #include <conf ig . h>
6 #endif
7 #include <std io . h>
8 #include <math . h>
9 #include <s t d l i b . h>

10
11 #define MAXLINE 100
12
13 double
14 func (double x , double a [] , int n)
15 {
16 double ret = 0;
17 int i ;
18 for (i = 0 ; i < n ; i ++)
19 ret += a [i] * pow (x , (double) i) ;
20 return ret ;
21 }
22
23 int
24 main (void)
25 {
26 char l ine [MAXLINE + 1] ;
27 double * coe f = NULL;
28 double *valuesx = NULL, *valuesy = NULL;
29 double f i t , number0 , number1 , tmp , div ;
30 int i , j , ncoefs , mvalues , t c oe f s ;
31 int f i r s t , ok ;
32
33 FILE * f , *out ;

78 External Interface

34
35
36 mvalues = 0;
37 f = fopen (" external . values " , " r ") ;
38 while (fge ts (l ine , MAXLINE, f) != NULL)
39 {
40 sscanf (l ine , "%l f%l f " , &number0 , &number1) ;
41 valuesx = (double *) r e a l l o c (valuesx , sizeof (double) * (

mvalues + 1)) ;
42 valuesy = (double *) r e a l l o c (valuesy , sizeof (double) * (

mvalues + 1)) ;
43 valuesx [mvalues] = number0 ;
44 valuesy [mvalues] = number1 ;
45 mvalues++;
46 }
47 f c l o s e (f) ;
48
49 ok = 1;
50 f i r s t = 1 ;
51 ncoefs = 0;
52 out = fopen (" external . f i t " , "w") ;
53 f = fopen (" external . input " , " r ") ;
54 i f (! f)
55 {
56 pr int f ("no f i l e external . input\n") ;
57 ex i t (EXIT_FAILURE) ;
58 }
59 while (ok)
60 {
61 while (fge ts (l ine , MAXLINE, f) != NULL)
62 {
63 char *p = l ine ;
64 while (*p == ’ ’ || *p == ’\t ’)
65 p++;
66 i f (*p == ’\r ’ || *p == ’\n ’)
67 break ;
68
69 sscanf (l ine , "%l f " , &number0) ;
70 ncoefs ++;
71
72 i f (f i r s t)
73 {
74 coe f = (double *) r e a l l o c (coef , sizeof (double) *

(ncoefs)) ;
75 t c oe f s=ncoefs ;
76 }
77 coe f [ncoefs − 1] = number0 ;
78 }
79 i f (f e o f (f))
80 ok=0;
81 f i r s t = 0 ;
82 ncoefs = 0;
83 f i t = 0 ;
84 for (i = 0 ; i < mvalues ; i ++)
85 {
86 tmp = func (valuesx [i] , coef , t c oe f s) ;
87 / / check div by zero
88 i f (valuesy [i] == 0)
89 div = 1; / / use absolute
90 else
91 div = valuesy [i] * valuesy [i] ; / / use re la t i ve
92 f i t += (tmp − valuesy [i]) * (tmp − valuesy [i]) / div ;

11.2. Running the example and examining results 79

93 }
94
95 f p r i n t f (out , "%l f \n" , f i t) ;
96 }
97 f c l o s e (out) ;
98 f c l o s e (f) ;
99 }

11.2 Running the example and examining results

To create the needed files and run the test you only have to type in the
GAFit’s examples folder –see 52–:

$ cd miscellaneuous/external
$ make external
$ gafit > output.txt

Some things happen, e.g. compiling external.c source code to produce
external binary, and the example begins to run. What is on way?

Step 1 GAFit is launched. It finds two input files: bounds.txt and exter-
nal.values.

Figure 11.2: Step 1 : GAFit is launched

Step 2 GAFit writes a whole population of coefficients to be evaluated in the
external.input file –File 11.5– using as upper and lower bounds those

80 External Interface

specified in the file bounds.txt –File 11.2–. If the file external.input
exists, it is overwritten.
If we want only one coefficients set at a time, the type of job must be
changed from external bulk to external in File 11.3.
The coefficients must be integers –bounds.txt last column set to 1–.

Figure 11.3: Step 2 : GAFit overwrites or creates the external.input file.

Step 3 GAFit launches the external binary.

Figure 11.4: Step 3 : GAFit launches the external binary

Step 4 external using external.input evaluates the external.values and over-
writes if the file exists, or it creates the external.fit file –File 11.6–.

11.2. Running the example and examining results 81

Figure 11.5: Step 5 : external using external.input evaluates the exter-
nal.values and overwrites or creates the external.fit file

Step 5 GAFit reads the external.fit file with the results. If minimizing, the
lesser best, so a 0, or near it, means a very good fit. I the file shown,
File 11.6, the 13th value is worse than 6th.

The nth value, (0, 9, -4, 0, 0), from File 11.5 represents the polyno-
mial:

p(x) = 0x4 + 0x3 − 4x2 + 9x+ 0

Table 11.2: nth set of coefficients fit.

x f(x) p(x) = −4x2 + 9x [p(x)−f(x)]2
f(x)2

-3 40 -63 6.630625
-2 0 -34 1156.000000
-1 0 -13 169.000000
0 4 0 1.00000
1 0 5 25.00000
2 0 2 4.00000
3 40 -9 1.500625∑ [p(x)−f(x)]2

f(x)2 1363.131250

The calculations are shown in Table 11.2 for the nth coefficients set:
Files 11.5 and 11.6.

Note that, in the external.c program, File 11.4, lines 88-92, we do a
trick to avoid dividing by zero: we use a relative fit, but if divisor
equals zero, we use 1 for the divisor which in the other hand it is
converted in an absolute fit.

Step 6 if GAFit finds it in the external.fit file, the best fit is overwritten if
exists, or creates the best.txt file –File 11.7. Note that this file always

82 External Interface

Figure 11.6: Step 5 : GAFit reads the external.fit file

will be overwritten: If you have some fit to save, copy it out there or
rename it.

The values shown represent the polynomial:

f(x) = x4 − 5x2 + 4

Figure 11.7: Step 6 : if the fit is the best till now, GAFit overwrites or
creates the best.txt file

11.2. Running the example and examining results 83

File 11.5: external.input file
[. . .]

0.000000
0.000000
−7.000000
0.000000
0.000000

0.000000
9.000000
−4.000000
0.000000
0.000000

0.000000
0.000000
0.000000
−4.000000
0.000000

[. . .]

coefficients set n

coefficients set n+ 1

File 11.6: external.fit file

[. . .]
1680.261250
1363.131250
2097.580000
[. . .]

evaluation of nth coef-
ficients set

File 11.7: best.txt

4.000000000000
0.000000000000
−5.000000000000
0.000000000000
1.000000000000

Fitness : 0.000000000000

best till now coeffi-
cients set

fit value of the best co-
efficients set

The output of the whole process is sumarized in File 11.8.

Configuring GAFit to work with an external program is a complex task.
You can begin with this example changing the code and the configuration
until it covers all your needs. A good tip is to use the test option in the
[job] section of the job.txt file to set always the same seed and compare
between changes –See 15.2–.

84 External Interface

File 11.8: external.output

[. . .]
+−−+
| Settings for job |
+−−+
| Command : [. / external] .
| Bounds : [bounds . txt] |
| External input : [external . input] |
| External f i t : [external . f i t] |
| Total c o e f f i c i e n t s : 5 |
| Print options : runs yes , ga set t ings no |
+−−+
| run : 1 |
| TEST MODE seed : 1488732015
+−−+

Eval . Best f i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
100 10624
200 4287
[. . .]
800 28
4900 28
5000 0
5000 0

#
#Results
#

1 f i r s t +4.000000000000
2 second +0.000000000000
3 third −5.000000000000
4 fourth +0.000000000000

command to run

seed for this run

individuals calculated
and best fit till now

Last best written to
best.txt

More information on this subject on 21.1. To test further this example,
we can do some modiffcations:

• change the number of coefficients to 6

• add a new name to [coefficients names] section

• add a new line to the bounds.txt file.

and run it some times.
There are distinct results from each run, because the GA explores all

the space limited by the bounds and by the type of coefficients: only inte-
gers. Some results are shown in Table 11.3 and plotted in Figure 11.8.

Table 11.3: Some results running
the example with 6 coefficients.

a0 a1 a2 a3 a4 a5 fita

0 0 0 0 0 0 3.0
4 0 -5 0 1 0 0.0
0 4 5 0 0 -1 21.0
0 -8 0 10 0 -2 75.0

a The lesser best.

11.2. Running the example and examining results 85

Figure 11.8: Table 11.3 polynomial plots.

−10 −8 −6 −4 −2 2 4 6 8 10

−10

−8

−6

−4

−2

2

4

6

8

10

x

f(x)
x4 − 5x2 + 4 Fit: 0.0

−1x5 + 5x2 + 4x Fit:21.0
−2x5 + 10x3 − 8x Fit:75.0

12MOPAC Interface

I’m doing a (free) operating system (just
a hobby, won’t be big and professional
like gnu) for 386(486) AT clones.

Linus Torvalds. 1991

In this Section, a semiempirical Hamiltonian is reparametrized to fit
the energetics and also geometries and frequencies for a decomposition
channel of vinyl cyanide (VC). The ab initio calculations for this system are
shown below –taken from [Zahra Homayoon, Saulo A. Vázquez, Roberto
Rodríguez-Fernández, and Emilio Martínez-Núñez. “Ab Initio and RRKM
Study of the HCN/HNC Elimination Channels from Vinyl Cyanide”. In:
The Journal of Physical Chemistry A 115.6 (2011). PMID: 21261315, pp. 979–
985. DOI: 10.1021/jp109843a]–.

12.1 Prerequisites

You must have installed MOPAC in your system –MOPAC 2009, 2012 or
2016–. You must know where it is installed or which is the value of the MO
PAC_LICENSE shell variable, to set correctly external-mopac.sh –File
12.6–.

12.2 Input and executable files

The complete interface was explained in the Section 21. To create and run
the example you must type:

$ cd mopac/mopac
$ tar xvzf mopac.tgz
$ gafit > output.txt

87

https://doi.org/10.1021/jp109843a

88 MOPAC Interface

Some files are extracted from the compressed data file and the example
is run. Check that your environment variable PATH contains the folder
were the GAFit’s executables are installed1.

Table 12.1: Files in the mopac-example folder after uncompress the
mopac.tgz file.

File Type

bounds.txt text file
conditions.txt text file
external-mopac.sh shell script
job.txt job configuration
template.coefs mopac external coefficients
template.mop mopac job template

File 12.1: External example job.txt: fitting MOPAC coefficients

[parameters]
population : 100
crossover rate : 0.75
blx_alpha : 0.5
mutation rate : 0.1
e l i t i sm : yes
tournament s ize : 5
crossover : sbx
mutation : sigma
sigma : 0.1
d i rec t i on : min

[job]
runs : 1
evaluations : 5000
type : external auto
command: external−mopac . sh

[print]
print runs : yes

Defaults

External command

As shown in File 12.1, the job is declared as external auto, so the
external scripts and/or binaries must configure the system by themselves.

File 12.2: MOPAC coefficient limits: bounds.txt file
TEXT TEXT TEXT TEXT

−10. 10. 0
−10. 10.0 0
−10. 10. 0
−20. 20.0 0
−100. 100. 0
−100. 100. 0
−100. 100.0 0
−10. 10. 0
−10. 10.0 0
−10. 10. 0
−10. 10. 0
−20. 20.0 0
−20. 20. 0
−20. 20.0 0
−20. 20. 0
−10. 10. 0

1default value: $HOME/bin

12.2. Input and executable files 89

The objective is to obtain a suitable combination of coefficients, File
12.3, to satisfy the constrains declared in File 12.5 using the MOPAC 2009
task shown in File 12.4 where the @ symbol will be replaced by the name of
a copy of File 12.3 where the coefficients are generated by GAFit between
some limits expressed in the File 12.2.

Note that these randomly generated coefficients are prone to err and
could crash MOPAC.

File 12.3: MOPAC 2009 coefficients to fit. template.coefs file
BETAS H −6.173787
ZS H 1.188078
ALP H 2.882324
GSS H 12.848
USS C −52.028658
UPP C −39.614239
BETAS C −15.715783
BETAP C −7.719283
ZS C 1.808665
ZP C 1.685116
ALP C 2.648274
GSS C 12.23
GSP C 11.47
GPP C 11.08
GP2 C 9.84
HSP C 2.43

Here, File 12.3 only a small set of coefficients to fit. The whole co-
efficients list and their default values can be obtained from the MOPAC
source.

The interface utilities count the number of coefficients to fit and config-
ure GAFit accordingly as shown in Figure 21.2 and explained in section
21.4. Here, the File 12.7 is used to pass to GAFit the configuration.

File 12.4: MOPAC 2009 task. template.mop file

AM1 prec ise external=@ geo−ok nosym

H 0.00000000 +0 0.0000000 +0 0.0000000 +0 0.1275
C 1.09852142 +1 0.0000000 +0 0.0000000 +0 1 0 0 −0.1565
C 1.33416836 +1 123.1900576 +1 0.0000000 +0 2 1 0 −0.0994
H 1.09879509 +1 115.3226363 +1 179.9929115 +1 2 1 3 0.1270
H 1.10533055 +1 122.1640414 +1 179.9944757 +1 3 2 1 0.1514
C 1.41933576 +1 114.5208739 +1 179.9977508 +1 3 5 2 −0.1114
N 1.16399609 +1 179.1128557 +1 1.2752342 +1 6 3 5 −0.0387

oldgeo AM1 prec ise external=@ force geo−ok nosym

AM1 prec ise ts external=@ geo−ok nosym

C 0.000000 0 0.000000 0 0.000000 0 0 0 0
C 1.310566 1 0.000000 0 0.000000 0 1 0 0
C 2.179061 1 104.132782 1 0.000000 0 2 1 0
N 1.160916 1 160.493759 1 0.000000 1 3 2 1
H 1.076805 1 126.972862 1 0.000000 1 1 2 3
H 1.084538 1 114.088127 1 180.000000 1 1 2 3
H 1.208813 1 35.831474 1 180.000000 1 2 3 4

First calculation

Second calculation

Third calculation

In File 12.4 we have three calculations:

• The first one, an Austin Model 1 (AM1) geometry optimization of the
vinyl cyanide. Figure 12.1.

90 MOPAC Interface

Figure 12.1: Vinyl cyanide drawn using the coordinates of the first calcu-
lation (optimization of the minimum energy structure).

• The second one, using the optimized geometry from first one (key-
word oldgeo), it calculates vibrational frequencies (keyword force)

• The third one, a transition state search (keyword ts). Figure 12.2.

Figure 12.2: Three-centered transition state drawn using the coordinates
of the last calculation.

The number of calculations presents in the task are detected parsing
MOPAC output. Some semiempirical parameters are taken at run time by
use of EXTERNAL=@, where GAFit will replace all @ with the name of
a file which contains the generated parameters to fit as explained before.
For those parameters not in file, MOPAC take its defaults.

File 12.5: Constrains: conditions.txt file
del t 3 1 100.6 0.1
frequency 2 15 3271.0 1e−4
distance 3 1 7 3.700309096 100.0
penalty 1e10

Constrains are explained in Section 21.6. Here, we have:

delt 3 1 100.6 0.1 Difference of heat of formation between calculation 3
(optimized transition state) and calculation 1 (optimized geometry)
must be 100.6 kcal/mol and it has a weight of 0.1.

frequency 2 15 3271.0 1e-4 Vibrational frequency number 15, obtained
from calculation 2, must be 3271.0 and it has a weight of 0.0001.

distance 3 1 7 3.700309096 100.0 Distance in calculation 3 between atom
1 and atom 7 must be 3.700309096 and having a weight of 100.0.

12.3. Running the example and examining results 91

penalty 1e10 If any of the calculations in the template fails, it be as-
signed a penalty of 10.000.000.000.

Each set of semiempirical parameters is evaluated taking into account
MOPAC output with:

fit =



if
calculation

is
done:



[
100.6− (HEAT[1st calculation] −HEAT[3rd calculation])

]2 ∗ 0.1
+[

3271.0− FREQUENCY[number 15 from 2nd calculation]

]2
∗ 1e−4

+[
3.700309096−DISTANCE[atoms 3-1 from 3rd calculation]

]2 ∗ 100.

if calculation fails: 1e10

GAFit shall run to minimize the fit.

12.3 Running the example and examining results

The file external-mopac.sh performs all the above operations, as shown in
File 12.1.

To run the example, type:

$ gafit > output.txt

The external program provided is shown in File 12.6. The operation mode
is similar but slightly more complicated than 11. These are the steps:

File 12.6: external program: external-mopac.sh file
! / bin / sh

export MOPAC_LICENSE=$HOME/ mopac2009
export MOPAC_EXECUTABLE=MOPAC2009. exe
export COEFS_TEMPLATE=" template . coe fs "
export MOPAC_TEMPLATE=" template .mop"
export MOPAC_MOP="mopac_input .mop"
export EXTERNAL_INPUT="mopac . input "
export EXTERNAL_FIT="mopac . f i t "
export EXTRACTED_DATA=" extracted . data "
export BOUNDS_FILE="bounds . txt "
export TOOLS_OUTPUT=" yes "

i n j e c t o r $1
i f ["$1 " −ne "0"]
then

$MOPAC_LICENSE/$MOPAC_EXECUTABLE $MOPAC_MOP
extractor $1
f i t t e r $1 $EXTRACTED_DATA $EXTERNAL_FIT

f i

Environmental vari-
ables setting the sys-
tem

Configure system and
create files

MOPAC run

Extract data
Fit

Step 1 GAFit runs the external program to configure the system as:

external-mopac.sh 0

92 MOPAC Interface

A file with the configuration is generated by running injector 0 in
turn. This file is shown in File 12.7. All the options are taken from
the environment variables set in File 12.6.

File 12.7: external auto: response file
[job]
type : external
c o e f f i c i e n t s : 16
external input : mopac . input
external f i t : mopac . f i t
bounds : bounds . txt

[c o e f f i c i e n t names]
BETAS H
ZS H
ALP H
GSS H
USS C
UPP C
BETAS C
BETAP C
ZS C
ZP C
ALP C
GSS C
GSP C
GPP C
GP2 C
HSP C

Step 2 GAFit using the information from File 12.7 configures itself.

Step 3 GAFit creates a whole population of individuals. Each individual is
a coefficient set.

Step 4 GAFit writes the file mopac.input with one set of coefficients –or a
whole population, depending upon configuration–. File 12.8.

File 12.8: mopac.input file

3.963742
4.707052
8.613357
−13.268145
−30.000657
−74.414557
−22.103403
−4.673270
4.940829
−1.073867
2.199698
−14.336436
−8.429824
−3.522071
−10.090874
−8.412029

Step 5 GAFit launches the external program with one parameter: the num-
ber of coefficients.

external-mopac.sh 16

12.3. Running the example and examining results 93

Step 6 external-mopac.sh launches injector 16 which create the needed
files to run the MOPAC 2009 task:

• mopac_input.mop, a copy of File 12.4 where the @ is replaced to
point the file below –File 12.8–.

• a copy of File 12.8.

Step 7 external-mopac.sh launches MOPAC 2009 on mopac_input.mop,
as input file, running the task with mopac_input.out as output: File
12.9, where near most the lines are omitted and the three individual
task are shown.

File 12.9: mopac_input.out file
[. . .]

** **
** MOPAC2009 **
** **

[. . .]

AM1 prec ise external=A geo−ok nosym
Sheep #A#

ATOM CHEMICAL BOND LENGTH BOND ANGLE TWIST ANGLE
NUMBER SYMBOL (ANGSTROMS) (DEGREES) (DEGREES)

(I) NA: I NB:NA: I NC:NB:NA: I NA NB NC
1 H 0.00000000 0.0000000 0.0000000
2 C 1.09852142 * 0.0000000 0.0000000 1 0 0

[. . .]

TOTAL CPU TIME: 0.08 SECONDS

== MOPAC DONE ==

[. . .]

oldgeo AM1 prec ise external=A force geo−ok nosym

[. . .]

TOTAL CPU TIME: 0.16 SECONDS

== MOPAC DONE ==

[. . .]

AM1 prec ise ts external=A geo−ok nosym

[. . .]

TOTAL CPU TIME: 0.24 SECONDS

== MOPAC DONE ==

Step 8 external-mopac.sh launches extractor which extracts data from
the mopac 2009 output –mopac_input.out– writing it to extracted.data,
File 12.10.

94 MOPAC Interface

File 12.10: extracted.data file
0 0 6
3
0 0 0
−285.89460
0 0 1
−1196.18301
0 0 2
7
0 0 3
1 H 0.0000 0.0000 0.0000
0 0 3
2 C 7.5565 0.0000 0.0000
0 0 3
[. . .]

The structure is described in Section 21.5.

Step 9 external-mopac.sh launches fitter which using the extracted.data
file evaluate the coefficients –File 12.11– writing the result to mopac.fit
–File 12.12–.

File 12.11: Output: fitter evaluation
DELTA calc= 140.22725000000014 re f= 100.59999999999999 we= '

&0.10000000000000001 cont= 1.55164336304490329E−002
FREQUENCY calc= 98.739999999999995 re f= 3271.0000000000000 we= '

&1.00000000000000005E−004 cont= 9.40538249390785976E−005
DISTANCE calc= 3.6829195484017840 re f= 3.7003090959999998 we= '

&100.00000000000000 cont= 2.20851605509992830E−003
individual 1 f i t = 1.78190035104880407E−002

To see this output you need to
set the environmental variable
TOOLS_OUTPUT to “yes”

Step 10 external-mopac.sh finishes, and control returns to GAFit which
apply the mopac.fit values to genetic selection.

File 12.12: mopac.fit file
1.78190035104880407E−002

Step 11 GAFit runs steps from Step 4 to here for each coefficient set to
evaluate.

Step 12 if GAFit does not meet a condition to stop, it jumps to Step 3 .

A reduced output example is shown in File 12.13. At the end, there are
the best coefficients set, which also can be found in the file best.txt.

A trick to evaluate the best.txt again and examine the fitting details
is to copy best.txt over mopac.input and run the external script external-
mopac.sh with 1 as its argument as shown below:Don’t forget to set TOOLS

OUTPUT to “yes”

$ cp best.txt mopac.input
$./external-mopac.sh 1
extractor correct/total:1/1

DELTA calc= 22.545130000005884 ref= 100.59999999999999
we= 0.10000000000000001 cont= 6.02010474994563588E-002

FREQUENCY calc= 2117.2900000000000 ref= 3271.0000000000000
we= 1.00000000000000005E-004 cont= 1.24403393046421793E-005

DISTANCE calc= 3.6747770408556764 ref= 3.7003090959999998
we= 100.00000000000000 cont= 4.76097105301748029E-003

individual 1 fit= 6.49744588917784832E-002
$

12.3. Running the example and examining results 95

File 12.13: GAFit output
[. . .]

+−−+
| Settings for job |
+−−+
| Command : [. / external−mopac . sh] |
| Bounds : [bounds . txt] |
| External input : [mopac2009 . input] |
| External f i t : [mopac2009 . f i t] |
| Total c o e f f i c i e n t s : 16 |
| Print options : runs yes , ga set t ings no |
+−−+
| run : 1 |
| TEST MODE seed : 1488732015 |
+−−+

Eval . Best f i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[. . .]
100 608.43
[. . .]
extractor correc t / t o t a l : 0 / 1
PENALTY cont= 10000000000.000000

individual 1 f i t = 10000000000.000000
[. . .]
extractor correc t / t o t a l : 1 / 1
DELTA calc= 1434.4099399999996 re f= 100.59999999999999 we= '

&0.10000000000000001 cont= 177904.89560428029
FREQUENCY calc= 781.64999999999998 re f= 3271.0000000000000 we= '

&1.0000000000000000E−004 cont= 619.68634224999994
DISTANCE calc= 3.7135732432381094 re f= 3.7003090959999998 we= '

&100.00000000000000 cont= 1.7593760195425176E−002
individual 1 f i t = 178524.59954029048

[. . .]
500 608.4
[. . .]

#
#Results
#

1 BETAS H +8.101808046038
2 ZS H +7.087829763576
3 ALP H +5.154836427027
4 GSS H −5.328341920547
5 USS C +18.998979138361
6 UPP C +46.181250338527
7 BETAS C −31.725560376293
8 BETAP C −1.149324435345
9 ZS C +3.304215163600

10 ZP C −6.055745378163
11 ALP C +1.087429221295
12 GSS C −5.451587242242
13 GSP C +0.110110780275
14 GPP C +10.631884089965
15 GP2 C +10.075900047122
16 HSP C −8.789173820345

13Enhanced MOPAC Interface

Giving the Linus Torvalds Award to the
Free Software Foundation is a bit like
giving the Han Solo Award to the Rebel
Fleet.

Richard Stallman

This example is the same as the Section 12, so we shall only show the
differences.

13.1 Input and executable files

The complete enhanced interface was explained in the Section 22. To cre-
ate and run the example you must type:

$ cd mopac/shepherd
$ tar xvzf mopac-shepherd.tgz
$ gafit > output.txt

After this, the files created are shown in Table 13.1.
Checking files against the previous section example, you figure out that

the external-mopac.sh file –13.1– is slighty different:

• the line "injector $1" is changed to "injector $1 bulk". As stated in
21.4, the option bulk brings the system to an external bulk configu-
ration.

97

98 Enhanced MOPAC Interface

Table 13.1: Files in the shepherd-example folder.

File Type Provided by

bounds.txt text file example
conditions.txt text file example
external-mopac2009.sh shell script example
job.txt job configuration example
template.coefs mopac2009 external coefficients example
template.mop mopac2009 job template example

File 13.1: external program: external-mopac.sh file

! / bin / sh
export MOPAC_LICENSE=$HOME/ mopac2009
export MOPAC_EXECUTABLE=MOPAC2009. exe
export COEFS_TEMPLATE=" template . coe fs "
export MOPAC_TEMPLATE=" template .mop"
export MOPAC_MOP="mopac_input .mop"
export EXTERNAL_INPUT="mopac . input "
export EXTERNAL_FIT="mopac . f i t "
export EXTRACTED_DATA=" extracted . data "
export BOUNDS_FILE="bounds . txt "
export TOOLS_OUTPUT=" yes "

i n j e c t o r $1 bulk
i f ["$1 " −ne "0"]
then

shepherd
extractor $1
f i t t e r $1 $EXTRACTED_DATA $EXTERNAL_FIT

f i

Environmental vari-
ables setting the sys-
tem

Configure system and
create files

launches MOPAC tasks
running in parallel

Extracts data

Fit

Here –See Section 15.2– a whole population of coefficient sets are
passed from GAFit– Step 4 in page 92–.

• the line "$MOPAC_LICENSE/$MOPAC_EXECUTABLE $MOPA
C_MOP" is replaced by "shepherd" only.

13.2 Running the example

The big difference with Section 12 is Step 7 where shepherd launches
and controls MOPAC 2009 tasks running in parallel feeding them with
one or various coefficient sets. The time spent processing each population
is used to calculate the optimal number of concurrent tasks which varies
around some optimal one.

To see the output shown in File 13.2, the environmental variable TOO
LS_OUTPUT must be set to yes as in File 13.1.

13.2. Running the example 99

File 13.2: shepherd example output
[. . .]

+−−+
| Settings for job |
+−−+
| Command : [. / external−mopac . sh] |
| Bounds : [bounds . txt] |
| External input : [mopac2009 . input] |
| External f i t : [mopac2009 . f i t] |
| Total c o e f f i c i e n t s : 16 |
| Print options : runs yes , ga set t ings no |
+−−+
| run : 1 |
| TEST MODE seed : 1488732015 |
+−−+
shepherd # f l o cks :8
shepherd elapsed time :31.718445
extractor correc t / t o t a l :6 /100
[. . .]
DELTA calc= −6301.0098500000004 re f= 100.59999999999999 we= '

&0.10000000000000001 cont= 4098060.8671617033
FREQUENCY calc= 1598.5699999999999 re f= 3271.0000000000000 we= '

&1.0000000000000000E−004 cont= 279.70221049000003
DISTANCE calc= 6.3118891919999998 re f= 3.7003090959999998 we= '

&100.00000000000000 cont= 682.03505978233693
individual 6 f i t = 4099022.6044319756

DELTA calc= −9881.3282600000002 re f= 100.59999999999999 we= '
&0.10000000000000001 cont= 9963889.1787786633

FREQUENCY calc= 1510.0400000000000 re f= 3271.0000000000000 we= '
&1.0000000000000000E−004 cont= 310.09801216000005

DISTANCE calc= 3.8634768579999998 re f= 3.7003090959999998 we= '
&100.00000000000000 cont= 2.6623718556088658

individual 41 f i t = 9964201.9391626790
[. . .]
PENALTY cont= 10000000000.000000

individual 23 f i t = 10000000000.000000
[. . .]
Eval . Best f i t .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
100 2624.58
[. . .]
200 2624.58
[. . .]

#
#Results
#

1 BETAS H −1.768452251222
2 ZS H −2.376986291435
3 ALP H +9.991399850692
4 GSS H +10.914581171663
5 USS C +6.828760684854
6 UPP C −29.019169662622
7 BETAS C +74.815480306193
8 BETAP C +2.377750618559
9 ZS C +2.854646124344

10 ZP C −1.962588155625
11 ALP C −5.219131584847
12 GSS C +4.110906954906
13 GSP C +12.013191111392
14 GPP C −14.296990835246
15 GP2 C −9.524967982213
16 HSP C −3.068438523015

A maximum of eight
parallel MOPAC task
to process this popula-
tion

Time spent process-
ing this population by
eight parallel task

The population is of
100 coefficient sets and
only 6 yield correct re-
sults

Coefficient set with
correct results. Fit:
4099022.6044319756

Coefficient set failed

The best of all in
this run. Saved into
best.txt file

So there are a lot of files named A, B, C, . . . , AA, AB, . . . –following the
GAFit’s automatic coefficient names convention, as explained in Section
15.4–, each of them containing a unique coefficient set to be used as exter-
nal file for the mopac template –See Step 6 in page 92–. In the example,
100 sets comprised from A to CV.

Also, the mopac template file is cloned to a file named taking into ac-
count the first and last coefficient set to calculate in the task. For example,
if the first coefficient set is the first of all –A coefficient set file– and the
last the 29th –AB coefficient set file–, the file cloned would be A-AB.mop.
This is a "flock" of 29 "sheep".

100 Enhanced MOPAC Interface

This behaviour is restricted in the code to a one set only: one set per
MOPAC 2009 task –a sheep per flock–, so the mopac template file is cloned
to files like A-A.mop, B-B.mop, ..., CV-CV.mop. See Section 22.2 about
burst mode if you want to change this behaviour.

After processing an entire population by shepherd, extractor extracts
the data and fitter evaluates it as shown in Section 12.

Here, we can use the same trick –Section 12.3– evaluating the best.txt
to examine the fitting details:

$ cp best.txt mopac.input
$./external-mopac2009.sh 1

shepherd #flocks:1
shepherd elapsed time:0.338015
extractor correct/total:1/1
DELTA calc= 22.545130000005884 ref= 100.59999999999999

we= 0.10000000000000001 cont= 6.02010474994563588E-002
FREQUENCY calc= 2117.2900000000000 ref= 3271.0000000000000

we= 1.00000000000000005E-004 cont= 1.24403393046421793E-005
DISTANCE calc= 3.6747770408556764 ref= 3.7003090959999998

we= 100.00000000000000 cont= 4.76097105301748029E-003
individual 1 fit= 6.49744588917784832E-002

$

Part III

Reference

101

14Evolutionary Algorithms

I am turned into a sort of machine for
observing facts and grinding out
conclusions.

Charles Darwin

Evolutionary algorithms are a good tool in Global Optimization because
they make no assumptions about the problem, and therefore, they usually
perform very well in all types of problems[7].

These algorithms employ techniques inspired in biology such as repro-
duction, mutation, recombination and selection applied to a set of candi-
dates used as a population to find optimal ones.

Evolutionary algorithms proceed according to the scheme shown in Fig-
ure 14.1. A population is initialized; then, each member is evaluated ac-
cording to some objective function. And finally, some of the members are
selected to create a new population using reproduction techniques. The

initialize

population

evaluation

selection

reproduction

Figure 14.1: Evolutionary algorithms.

103

104 Evolutionary Algorithms

B
C
D
E
F

v= e B-Br+
C

r D
+

r

E
F

A

A

Figure 14.2: Genes and chromosome example: 4th potential from Table
17.2.

process continues until a population member turns out to be a good solu-
tion, or a maximum number of populations are reached.

There are many evolutionary algorithm types with distinctive features
depending on how the populations are used, how the individuals are repre-
sented, how the individuals are selected to reproduction, how the offspring
are included in the population of the next generation, etc.

The population of the next generation can be formed from:

• a combination of the current population and its offspring,

• some or all of the offspring, and none of the current generation indi-
viduals,

• none or some of the best individuals –known as elitist algorithm–
are propagated to the next generation.

We describe here two types of evolutionary algorithms of our interest:
Genetic Algorithms and Genetic Programming.

14.1 Genetic Algorithms

The individuals are described by an array of elementary types –the genes:
any suitable representation, including bits and bytes– similar to a deoxyribonucleic
acid (DNA) string, and are also called a chromosome.

Each gen can describe a characteristic, e.g. a double precision polyno-
mial coefficient value like the example in Fig. 14.2 where is represented
the 4th potential from Table 17.2.

Chromosomes could be fixed or variable length strings. The type, num-
ber, characteristics, etc of genes and how they are related in the chromo-
soma is a problem type dependent matter.

There are some genetic operators which can be applied over a chromo-
some string: Mutation, permutation and crossover.

Mutation
Mutation randomly changes one or more genes. If the chromosomes are of
fixed length, we may have a single gene mutation (Fig. 14.3) or a multiple
gene mutation (Fig. 14.4), and if the chromosomes are of variable length,
there can be an insertion (Fig. 14.5) or a deletion (Fig. 14.6).

14.1. Genetic Algorithms 105

Figure 14.3: Single gene mutation.

Figure 14.4: Multiple gene mutation.

Figure 14.5: Variable lenght insertion.

106 Evolutionary Algorithms

Figure 14.6: Variable lenght deletion.

Figure 14.7: Permutation.

Permutation
Permutation exchanges a pair of genes. Fig. 14.7.

Crossover
Crossover recombines two chromosomes to obtain a new one. Some crossover
types are described in the literature as Single Point Crossover (SPC), Double
Point Crossover (DPC), and Multiple Point Crossover (MPX). As above, the
chromosomes can be of fixed or variable length. See Fig. 14.8, 14.9, 14.10
and 14.11.

14.2 The Genetic Algorithm used in GAFit

The genetic algorithm used here was developed by Marques, Prudente,
Pereira, Almeida, Maniero, and Fellows [2] and co-workers and slightly
modified to support integer parameters in the function employed to fit in-
teraction energies. The GA main loop is shown in File 14.1. As expected,
it begins creating and evaluating the first population prior to run into the
main loop –a do-while between lines 109-179–.

File 14.1: core.c
64

14.2. The Genetic Algorithm used in GAFit 107

Figure 14.8: Single point crossover.

Figure 14.9: Variable lenght single point crossover.

Figure 14.10: Multiple point crossover.

108 Evolutionary Algorithms

Figure 14.11: Variable lenght multiple point crossover.

65 / / a l l o ca tes memory for individuals (to generate the new
population)

66 init ial izeNewPopulation (j o) ;
67
68 / / evolution cyc le
69 do
70 {
71 generation ++;
72 / / ***
73 current_evaluations += genetic (j o) ;
74 / / ***
75 update_all_time_best (j o) ;
76
77 / / output stats each ’ outputeach ’ evaluations
78 i f (current_evaluations − las t_eva ls > outputeach)
79 {
80 las t_eva ls = current_evaluations ;
81 stats (jo , generation , current_evaluations) ;
82 }
83 }
84 while (current_evaluations < jo−>evaluations) ;
85
86 / / l a s t stats
87
88 stats (jo , generation , current_evaluations) ;
89
90
91 for (i = 0 ; i < jo−>pop_size ; i ++)
92 {
93 f ree (jo−>population [i] . genes) ;
94 f ree (jo−>new_population [i] . genes) ;
95 }
96 f ree (jo−>population) ;
97 f ree (jo−>new_population) ;
98 f ree (jo−>best . genes) ;
99 f ree (jo−>new_best . genes) ;

100
101 / / re lease memory of old population
102 }
103
104 void
105 runJob (JOB * jo)
106 {
107 int run ; / / current run
108 FILE *output ;

14.2. The Genetic Algorithm used in GAFit 109

109 time_t t1 , t2 ;
110 char randtext [TEXT_RANDOM_SIZE] ;
111
112 in i tBest (j o) ;
113
114 time (&t1) ;
115
116 for (run = 1; run <= jo−>runs ; run++)
117 {
118 / / *********** hook to tes t mode ******** / /
119 init_rand (jo−>test , randtext) ;
120 / / **************************************/ /
121
122 i f (jo−>print_run || jo−>tes t != 0)
123 {
124 printRuRa (stdout) ;
125 i f (jo−>print_run)
126 {
127 printRun (stdout , run) ;
128 }
129 printRand (stdout , randtext) ;
130 printRuRa (stdout) ;
131 }
132 jo−>last_pr int = 0;
133
134 / / header
135 output = fopen (OUTPUT_FILE, " at ") ;
136 f p r i n t f (output , " run %d\n" , run) ;
137 f p r i n t f (output , "%s " , randtext) ;
138 f c l o s e (output) ;
139
140 algorithm (jo) ;
141 f f lush (stdout) ;
142 }
143
144 time (&t2) ;
145 avg_stats (jo−>runs , t2 − t1 , jo−>dir) ;
146 f ree (jo−>bounds) ;
147 cleanJob (j o) ;
148 }
149
150
151 / / main function
152 int
153 main (int argc , char **argv)
154 {
155 JOB job ;
156
157 in i tJob (&job) ;
158
159 banner (stdout , &job) ;
160
161 / / read print options
162 ReadPrintOptions (&job) ;
163
164 / / read GA parameters
165 ReadGaParameters (&job) ;
166
167 / / setup job
168 ReadJobType (&job) ;
169
170 / / read data and set job ’ s parameters

110 Evolutionary Algorithms

171 job . bounds = ReadJobExternal (&job) ;
172
173 i f (job . bounds != NULL)
174 {
175 / / Run GA
176 runJob (&job) ;
177 i f (job . f inal_evaluat ion)
178 {
179 char run_command[STRING_MAX] ;
180 snprintf (run_command , STRING_MAX − 1 , "%s −1" ,

The system is configured reading an input file –Section 15–. Once
configured, the GA main loop routine starts and continues till a maxi-
mum number of evaluations is reached as shown in Figure 14.12. The GA
only comunicates with the external world –internal or external routines
or programs– through the evaluation phase and when some subroutines
print outputs.

Table 14.1: GA subroutines

subroutine source comments

ga ga.c main loop
tournament_selection selection.c tournament algorithm
apply_elitism selection.c elitism algorithm
apply_crossover crossover.c crossover
apply_mutation mutation.c mutation
evaluate_pop evaluation.c this subroutine works as an interface

switching the evaluation to the desired
type of application

get_best selection.c

Tournament Selection

A subset of K individuals are selected randomly from the old population.
The best of the set is selected and introduced in the new population. This
operation is repeated till the new population is completed. K is the tour-
nament controlling parameter: Tournament size.

Genetic operations

Crossover

For all the population, each two consecutive individuals, a random num-
ber between 0 and 1 is obtained and if it is greater than the crossover rate
a crossover is performed obtaining two new offspring replacing their par-
ents. The type of crossover selects the operator to apply:

• Single point crossover. A random point is selected and the offspring
are obtained from the parents by exchanging the tail segments.

• Double point crossover. Two random points are selected and the off-
spring are obtained from the parents by exchanging the center seg-
ments.

14.2. The Genetic Algorithm used in GAFit 111

Configure system

Create first population

Evaluate first population

Tournament selection

Genetic operations

Evaluation

Elitism

Save all time best

Current evaluations
<

evaluations

End

4.000000000000
0.000000000000
-5.000000000000
0.000000000000
1.000000000000

Fitness: 0.000000000000

best.txt

YES

NO

GA
interface

Figure 14.12: GA main loop

112 Evolutionary Algorithms

• Simulated Binary Crossover (SBX)[8]. SBX simulates a SPC operator
on binary strings obtaining two offspring having some interesting
properties to self-adaptation[9]:

– high probability to mantain the extend between them like the
parents

– high probability to be near the parents values

SBX works as follows:

– A random value between 0 and 1 is selected: µ ∈ [0, 1]1.

– Using a uniform distribution we calculate β so the area under
probability curve from 0 to β is equal to µ:

β = (2µ)
1
η+1 if µ ≤ 0.5

β = (1
2(1−µ))

1
η+1 if µ > 0.5

– Now, we obtain the two children, C1 and C2, from the parents,
P1 and P2:

C1 =
1

2
[(1 + β)P1 − (1− β)P2]

C2 =
1

2
[(1− β)P1 + (1 + β)P2]

The controlling parameter is η –eta_sbx, Table 15.1– which is a real
non negative number. Larger values increase probability of children
close to their parents while small ones increase probability of distant
children[2].

• Blend Alpha Crossover (BLX-α)[10]. BLX-α crossover creates new off-
spring choosing a random value for each gene in the range:

[Gmin −∆α,Gmax + ∆α]

Here Gmin and Gmax are the smallest and largest of the two parents
gene values. ∆ is Gmax − Gmin. The value obtained is checked and
limited to the acceptable values for the gene, called the bounds.

BLX-α crossover has the first interesting self-adaption property of
SBX: high probability to mantain the extend between them like the
parents[9].

The controlling parameter is α –blx_alpha, Table 15.1– which deter-
mines the degree of variability. It was reported that a value α = 0.52

performs better than other values for many test problems[9].

SBX and BLX-α are arimetic crossovers. In both cases, if an integer gene
type is used, they revert to a Single Point crossover.

1Really, here the coded implementation is µ ∈ [0, 0.99] to avoid a divide by zero problem
in the calculation of β

2Known as BLX-0.5 crossover

14.2. The Genetic Algorithm used in GAFit 113

Mutation

The application is slighty different from the crossover operators. Here
mutation rate operates over genes while crossover rate operates over indi-
viduals:

• For all individuals in the population, a call to mutation subroutines
is performed obtaining a new offspring replacing the parent.

• For each individual’s gene, a random number between 0 and 1 is ob-
tained, and if it is greater than the mutation rate the corresponding
mutation is performed in the gene3.

There are four types of mutation to apply upon coefficient nature and
user choice:

• Real coefficients: Random and sigma.

– Random mutation. The parent gene is replaced by a random
number obtained from the acceptable set of values for the gen
–bounds–.

– Sigma mutation. The child gene, Gchild, is replaced by a new
value calculated from parent Gparent as:

Gchild = Gparent + σ(Gmax −Gmin)N(0, 1)

Gmax and Gmin are bounds, N(0, 1) is a random value sampled
from a standard normal distribution and σ –sigma, Table 15.1–
is the control parameter.
The value is checked against the bounds, and if in five tries a
suitable value between bounds is not found, a random mutation
is performed.

• Integer coefficients: Random and adjacent.

– Random mutation. The parent gene is replaced by a random
integer number between bounds.

– Adjacent mutation. Adjacent changes the parent gene by a unit
amount as follows:

Gchild =


Gmin + 1 if Gparent = Gmin
Gmax − 1 if Gparent = Gmax

otherwise randomly:
{
Gparent + 1
Gparent − 1

Elitism
Finally, elitism is applied: A random individual of the new generation is
replaced with the best from parent generation ensuring that the quality of
the best does not decrease along the time.

3As the mutation rate drops to zero, the probability that the parent replaces itself in-
creases.

15Input files

Garbage in, garbage out.

George Fuechsel. IBM instructor.

The input files names are of your choice, except for job and parameters
file. The job and parameters file was hardcoded as job.txt1.

File 15.1: job.txt. Genetic algorithm parameters and job settings for an
intermolecular module job
[job]
runs : 1
type : external auto
command: external−intermolecular . sh
evaluations : 5000000
Geometries : moldeni . dat
Energies : energies . dat
Atom2type : atom2types . txt
Bounds : bounds . txt
Charges : charges . txt
Potential : 1
All c o e f f i c i e n t s : no
f i t t i n g : r e la t i ve

[parameters]
population : 50
crossover rate : 0.75
blx_alpha : 0.5
mutation rate : 0.1
e l i t i sm : yes
tournament s ize : 5
crossover : sbx
mutation : sigma
sigma : 0.1
d i rec t i on : min

1Defined in ga.h

115

116 Input files

[print]
geometries : yes
runs : yes

There are fourth fixed sections, which can be put in any order, have
their own parameters, which can also be used in any order; these sections
specify:

parameters These parameters affect the genetic algorithm working mode.

job The job to be done.

print Diverse printing options.

coefficient names This section is used to set a user name to each coeffi-
cient.

Each option, including the whole sections, can be avoided, but the file
job.txt itself must be present. In case of omited parameters, the program
takes some default values (See table 15.1), so you can write a job.txt file like
15.2. This case is included in the advanced mode examples, miscellaneous,
external example as minimal-job.txt file.

File 15.2: Reduced job.txt.
[job]
c o e f f i c i e n t s : 5

False bool values can be written as “0” or “no”. True bool values can
be written as a “number <>0” or “yes”. Some parameters have a set of
valid values to choose from. If the chosen parameter is out the set, the
default will be taken. Parameters and sections are case-insensitive, but in
parameters names with more than one word whitespace matters! Please,
use one space between words.

Table 15.1: Job file default value parameters

Section Parameter Type Valid set Default

parameters
population integer 100

crossover rate real 0.75
crossover string {spc, dpc, blax, sbx} sbx
blx_alpha real 0.5

eta_sbx real non negative 2.0
mutation rate real 0.1

mutation string {random, sigma} sigma
sigma real 0.1

integer mutation string {random, adjacent} random
elitism bool {yes, no} yes

tournament size integer 5
direction string {min, max} min

job
type string {external, external bulk, exter-

nal auto}
external

runs integer 1
evaluations integer 5000

command string ./external
external input string external.input

external fit string external.fit
coefficients integer 0

15.1. Section [parameters] 117

Section Parameter Type Valid set Default

print
runs bool {yes, no} yes

ga settings bool {yes, no} no

In the Table 15.1 is summarized all common configuration options and
its default values. There are options not shown in the Table applicable
to some modules. i.e. the specific parameters for the intermolecular
module are shown In the Table 17.1.

An alternative configuration, the simple configuration mode, was de-
veloped using the keyword application in the [job] section with some
selected application modules. These work using the defaults for the mod-
ule and specifying only the options that must be set by user as shown in
Table 15.2.

Table 15.2: Job file, application modules options

Section Parameter Type Valid set Default

job
application module intermolecular

application string intermolecular must be set
evaluations integer 5000

potential integer 1
interactions string inter,all inter

application module mopac
application string mopac must be set
evaluations integer 5000

exec string absolute path to mopac exe-
cutable including binary

none, must be set

application module charmm
application string charmm must be set
evaluations integer 5000

exec string absolute path to charmm exe-
cutable including binary

none, must be set

refgeom string reference geometry none
calculated energies two integers which columns are the geom-

etry names and the calculated
energies

none, must be set

application module mvariable
application string mvariable must be set
evaluations integer 5000
coefficients integer number of coefficients to fit none, must be set

application module generic
application string generic must be set
evaluations integer 5000

ncores integer number of parallel calculations 1
template string templates template

executable string user provided script none, must be set
reference values string reference data reference.values

The examples for this mode were shown in the SimplifiedUserGuide.pdf.

15.1 Section [parameters]

The section [parameters] contains the genetic algorithm settings.

population Population size

elitism Elistism strategy. Section 14.2.

• no

118 Input files

• yes

tournament size Tournament selection size. Section 14.2.

crossover rate Crossover rate. Section 14.1.

blx_alpha BLX-α crossover coefficient

eta_sbx SBX crossover coefficient

crossover Crossover type.

• spc: Single Point Crossover

• dpc: Double Point Crossover

• blax: Blend Alpha Crossover

• sbx: Simulated Binary Crossover

mutation rate Mutation rate. Section 14.2.

mutation Mutation type

• random = Random mutation

• sigma = Sigma mutation

sigma Sigma mutation coefficient

integer mutation Mutation operator for integer variables. Section 14.2.

• random

• adjacent

direction Search direction

• min: Minimization

• max: Maximization

15.2 Section [job]

This section defines the run parameters for the present job. It also indi-
cates the names of the different files for the calculation.

The job parameters from the job section are:

Type type of job:

external Each gene is passed to the external program, one per run.

external bulk All the genes of the same generation are passed to
the external program, an entire generation per run, reducing
the overall load, speeding up calculations.

external auto GAFit is configured by the external command. See
21.1.

15.2. Section [job] 119

Test If it is not equal to zero, the integer is used as random seed, break-
ing the system randomness. This is the test mode, useful for testing
purposes. For as standard job you should use a random number: set
to zero this value or do not put anything. The used seed in a job is
printed one per run –if the option print runs is activated– in the
standard output and in the file stats.txt as shown below. The use of
this option forces one run despite the value of the runs parameter.

[...]
run 1
TEST MODE seed: 1488732015
[...]

Runs Number of runs. If the test mode is activated, only one run is per-
formed.

Evaluations Number of generations

Bounds The variation range of the coefficients is specified here. The third
column specifies if the coefficient will be treated as a real (0) or in-
teger (1) number. The number of lines depends on All coefficients
parameter –[job] section– and the chosen potential in job file.

File 15.3: Bounds. Variation range of the coefficients
TEXT OR EMPTY
−−−−−−−→−100−−−→100.−−−→0
−−−−−−−→0.−−−−−→ 100.0−→0
−−−−−−−→−1500.−→5000.0−→0
−−−−−−−→3.5−−−−→5.5−−−−→0

File 15.4: Bounds. All Coefficients=0. Structure
TEXT OR EMPTY LINE
1stMinimum−−−−−→1stMaximum−−−−−→1stType
2ndMinimum−−−−−→2ndMaximum−−−−−→2ndType
3rdMinimum−−−−−→3rdMaximum−−−−−→3rdType
4thMinimum−−−−−→4thMaximum−−−−−→4thType
. . .
nthMinimum−−−−−→nthMaximum−−−−−→nthType

File 15.5: Bounds. All Coefficients<>0. Structure
TEXT OR EMPTY LINE − interact ion 1 c o e f f i c i e n t s set
1stMinimum−−−−−→1stMaximum−−−−−→1stType
2ndMinimum−−−−−→2ndMaximum−−−−−→2ndType
3rdMinimum−−−−−→3rdMaximum−−−−−→3rdType
4thMinimum−−−−−→4thMaximum−−−−−→4thType
. . .
nthMinimum−−−−−→nthMaximum−−−−−→nthType
TEXT OR EMPTY LINE − interact ion 2 c o e f f i c i e n t s set
1stMinimum−−−−−→1stMaximum−−−−−→1stType
2ndMinimum−−−−−→2ndMaximum−−−−−→2ndType
3rdMinimum−−−−−→3rdMaximum−−−−−→3rdType
4thMinimum−−−−−→4thMaximum−−−−−→4thType
. . .
nthMinimum−−−−−→nthMaximum−−−−−→nthType
. . . .

120 Input files

TEXT OR EMPTY LINE − interact ion N c o e f f i c i e n t s set
1stMinimum−−−−−→1stMaximum−−−−−→1stType
2ndMinimum−−−−−→2ndMaximum−−−−−→2ndType
3rdMinimum−−−−−→3rdMaximum−−−−−→3rdType
4thMinimum−−−−−→4thMaximum−−−−−→4thType
. . .
nthMinimum−−−−−→nthMaximum−−−−−→nthType

The text line between each interaction is skipped when reading bounds.
Note that BLX-α and SBX revert to SPC crossover for integer coeffi-
cients.

File 15.6: Bounds file
TYPE 1: C(1)−Xe(14)

+0.00000 +1000000.00000 0
+0.00000 +10.00000 1

−1500.00000 +0.00000 0
+4.00000 +8.00000 0

TYPE 2: N(2)−Xe(14)
+0.00000 +1000000.00000 0
+0.00000 +10.00000 0

−1500.00000 +0.00000 0
+4.00000 +8.00000 0

TYPE 3: C(3)−Xe(14)
+0.00000 +1000000.00000 0
+0.00000 +10.00000 0

−1500.00000 +0.00000 0
+4.00000 +8.00000 0

TYPE 4: N(4)−Xe(14)
+0.00000 +1000000.00000 0
+0.00000 +10.00000 0

−1500.00000 +0.00000 0
+4.00000 +8.00000 0

TYPE 5: C(5)−Xe(14)
+0.00000 +1000000.00000 0
+0.00000 +10.00000 0

−1500.00000 +0.00000 0
+4.00000 +8.00000 0

Command External job, the command to be run.

File 15.7: External job settings
[job]
runs : 1
evaluations : 500000
type : external bulk
command: external . sh
c o e f f i c i e n t s : 5
external input : external . input
external f i t : external . f i t
bounds : bounds . txt

External input External job, the input for the external command, File
15.8. Here GAFit writes a coefficient vector to be evaluated by the
external command. If the option external bulk is chosen, all the coef-
ficients for a complete generation are passed, separating each one by
a blank line, File 15.9.

15.2. Section [job] 121

File 15.8: External input
4.894146
0.013449
−6.092118
−0.003859
1.216052

File 15.9: External bulk input
4.894146
0.013449
−6.092118
−0.003859
1.216052

4.894410
0.013449
−6.091149
−0.003859
1.215979

4.894332
0.013449
−6.091579
−0.003859
1.216001
. . .

External fit External job, the evaluation of the coefficients returned to
GAFit. If the option external bulk is used, a complete set must be
returned. Examples: 15.10 and 15.11.

File 15.10: External fit: one individual fit
25647.561250

File 15.11: External bulk fit: entire generation fit
25647.561250
3.000000
13.011250
6417.651250
3.000000
3.000000
3.000000
18.055000
13.011250
3.000000
25647.561250
7012.161250
4715.805000
[. . .]

Coefficients Number of coefficients to be considered in a external job.

122 Input files

15.3 Section [print]

This section controls how much is printed.

Runs This parameter controls if the intermediate results are printed on
standard output. See 16.

GA settings Prints genetic algorithm settings.

15.4 Section [coefficient names]

GAFit coefficient names default to the sequence {A, B, . . . , Z, AA, AB, . . . ,
BA, . . . , . . . , AAA, . . . } names and so on. If you want to use your own ones,
write a new section [coefficient names] with each name in a line. You
must specify at least the same number of lines as the number of coefficients
to be used; if not, GAFit stops. An example can be viewed in File 21.1.

These routines are also used internally to no related tasks like to name
temporary files.

16Output files

On two occasions I have been asked,
"Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right
answers come out?" ... I am not able
rightly to apprehend the kind of
confusion of ideas that could provoke
such a question.

Charles Babbage

standard output The standard output is used to print job results. An
example of the output is below. Some of the output is controlled by
options into the [print] section. See 15.3.

+--+
| GAFit 1.3d Build:314 **TEST MODE, seed:1488732015 ** |
| Fri Mar 2 16:09:22 2018 |
+--+
| |
| Cite this program as GAFit 1.3d |
[...]
+--+

INTERMOLECULAR MODULE

Coordinates:[coord.molden]
Energies:[energies.txt]
Atom2type:[atom2type.txt]
Bounds:[bounds.txt]
Charges:[charges.txt]
Potential read: 1
All coefficients: no, Read and repeat subset
Interactions types: inter
Fitting: relative

PRINT OPTIONS

geometries no
analytical no

INTERACTIONS

Different interaction types: 13,

123

124 Output files

with 4 coefficients each,
so, we need a 52 elements vector.
Choosen potential=1
Fragment A atoms: 13, Fragment B atoms: 1
Fragment A types: 13, Fragment B types: 1

Reading bounds for 4 coefficients

A +0.00000 - +1000000.00000 (real)
B +0.00000 - +10.00000 (integer)
C -1500.00000 - +0.00000 (real)
D +4.00000 - +8.00000 (integer)

52 BOUNDS VECTOR:

INTERACTION TYPE 1

C(1)-Xe(14)
Coefficients:
1 A +0.00000 - +1000000.00000 (real)
2 B +0.00000 - +10.00000 (integer)
3 C -1500.00000 - +0.00000 (real)
4 D +4.00000 - +8.00000 (integer)
INTERACTION TYPE 2

N(2)-Xe(14)
Coefficients:
5 A +0.00000 - +1000000.00000 (real)
6 B +0.00000 - +10.00000 (integer)
7 C -1500.00000 - +0.00000 (real)
8 D +4.00000 - +8.00000 (integer)
[...]
INTERACTION TYPE 13

H(13)-Xe(14)
Coefficients:
49 A +0.00000 - +1000000.00000 (real)
50 B +0.00000 - +10.00000 (integer)
51 C -1500.00000 - +0.00000 (real)
52 D +4.00000 - +8.00000 (integer)
+--+
| Settings for job |
+--+
| Command:[./external-intpot.sh] |
| Bounds:[bounds.txt.internal] |
| External input:[intpot.input] |
| External fit:[intpot.fit] |
| Total coefficients: 52 |
| Print options: runs yes, ga settings no |
+--+
| run: 1 |
| TEST MODE seed: 1488732015 |
+--+

Eval. Best fit.

100 22.5565
200 22.5565
[...]
5000 4.53655

#
#Results
#

INTERACTION TYPE 1

C(1)-Xe(14)
Coefficients:
1 A +901608.8066303307
2 B +4.0000000000
3 C -6.4303232967
4 D +5.0000000000

INTERACTION TYPE 2

N(2)-Xe(14)
Coefficients:
5 A +165595.8679798347
6 B +7.0000000000
7 C -1138.2394540608
8 D +5.0000000000
[...]

16.1. Other output files 125

INTERACTION TYPE 13

H(13)-Xe(14)
Coefficients:
49 A +520130.0359805273
50 B +2.0000000000
51 C -886.9079425981
52 D +8.0000000000
#
#Evaluation
#
#Geometry Energy Calculated Difference Weight
#======== ====== ========== ========== ======
1 -0.006436000000 -0.007377743473 +14.63 % +1.00
2 -0.012603000000 -0.013195973115 +4.71 % +1.00
[...]
30 +146.056144000000 +213.560874079430 +46.22 % +1.00
31 +297.072019000000 +611.114367352091 +105.71 % +1.00

If the runs option is set in section [print], like above, the number
of the current run is printed –just above the random number seed–,
and also two columns indicating:

• The number of individuals evaluated up to now, 5000 in the last
line before #Results.

• And the objective function best value up to now:
4.53655.

best.txt This file contains the best set of coefficients. It is updated every
time GAFit finds a better set, and it can be used by fitview -see
20.2-to obtain the coefficient values.
NOTE: This file is NOT loaded at the beginning of any run, so it can
be overwritten when a new run begins if you do not save it before-
hand.

16.1 Other output files

Other intermediate output files are:

• stats.txt This file show statistical data about the fitting showing the
number of evaluations performed, the generation, the average fitting
in the generation and the best fit till now.

run 1
TEST MODE seed: 1488732015
Eval. Gen. Average/population Best fit.
--
100 1 5.03763e+14 16027.9
200 2 1.05173e+13 2624.58

17Intermolecular module: input
files

DNA is like a computer program but far,
far more advanced than any software
ever created.

Bill Gates

Specific parameters for the intermolecular module are shown In the
Table 17.1.

Table 17.1: Job file default value for intermolecular module specific parameters

Section Parameter Type Valid set Default

job
geometries string geometries.txt

energies string energies.txt
atom2type string atom2type.txt

bounds string bounds.txt
charges string charges.txt

potential integer 1
all coefficients bool {yes, no} yes

fitting string {absolute, relative, user} relative

print
geometries bool {yes, no} yes
analytical bool {yes, no} yes

File 17.1: job.txt. Genetic algorithm parameters and job settings for an
intermolecular module job
[job]
runs : 1
type : external auto
command: external−intermolecular . sh
evaluations : 5000000
Geometries : moldeni . dat
Energies : energies . dat
Atom2type : atom2types . txt
Bounds : bounds . txt

127

128 Intermolecular module: input files

Charges : charges . txt
Potential : 1
All c o e f f i c i e n t s : no
f i t t i n g : r e la t i ve

[parameters]
population : 50
crossover rate : 0.75
blx_alpha : 0.5
mutation rate : 0.1
e l i t i sm : yes
tournament s ize : 5
crossover : sbx
mutation : sigma
sigma : 0.1
d i rec t i on : min

[print]
geometries : yes
runs : yes

17.1 Section [job]

The job parameters from the job section are:

Geometries Continuous set of molden format Cartesian geometries with-
out any empty lines between them.

File 17.2: Geometries file. Molden xyz coordinates
116

X Y Z
N −13.694289 −0.182672 0.000000
H −13.299638 0.824476 0.000000
C −12.403476 −0.960776 0.000000
H −14.263389 −0.348152 −0.831048
H −14.263389 −0.348152 0.831048
C −11.316612 0.153002 0.000000
H −12.348018 −1.588139 −0.892698
H −12.348018 −1.588139 0.892698
O −11.719020 1.326881 0.000000
. . .

116
X Y Z

N −9.694289 −0.182672 0.000000
H −9.299638 0.824476 0.000000
C −8.403476 −0.960776 0.000000
H −10.263389 −0.348152 −0.831048
H −10.263389 −0.348152 0.831048
C −7.316612 0.153002 0.000000
H −8.348018 −1.588139 −0.892698
H −8.348018 −1.588139 0.892698
O −7.719020 1.326881 0.000000
. . .

116
X Y Z

N −6.694289 −0.182672 0.000000
H −6.299638 0.824476 0.000000
C −5.403476 −0.960776 0.000000
H −7.263389 −0.348152 −0.831048

17.1. Section [job] 129

H −7.263389 −0.348152 0.831048
C −4.316612 0.153002 0.000000
H −5.348018 −1.588139 −0.892698
H −5.348018 −1.588139 0.892698
O −4.719020 1.326881 0.000000
. . .

Energies File with energies and weights for each geometry listed at ge-
ometries file. It must be in sync with the geometries file. Weights are
taken into account when the potential is calculated.

File 17.3: Energies file. Energies and weights
−0.016881788 1
−0.024242894 1
−0.033981373 1

. . .

File 17.4: Energies file. Structure
energie_of_f irst_geometry f i rs t_weight
energie_of_second_geometry second_weight
energie_of_third_geometry third_weight

. . .

File 17.5: Energies file. Structure of Energies file with auto weights
energie_f irst_geometry f i rs t_weight auto tolerance delta
energie_second_geometry second_weight auto tolerance delta
energie_third_geometry third_weight auto tolerance delta

. . .

Atom2type File to map atom numbers to type numbers. The first line
has the required parameters as integer numbers:

• Number of atoms in Fragment A. In this example, 18 (File 17.6).
• Total number of atoms.

The rest of the lines, three columns, specify:

• Atom number. Atom numbering must follow the order given in
the coordinate file.

• Atom symbol (two character max).
• Atom type number. A positive integer used as a type index.

From these parameters, all the different interactions are calculated.
The total number of interactions is obtained from the number of
atoms in Fragment A times the number of atoms in Fragment B. The
coefficients of some interactions are repeated: those that correspond
to interactions between atoms of the same type.
So, the number of different interactions is just the different atom
types in Fragment A multiplied by the number of different atom types
in Fragment B.

130 Intermolecular module: input files

File 17.6: Atom2type. Atom to atom types mapping
18 116

1 N 1
2 H 2
3 C 3
4 H 2
5 H 2
6 C 4
7 H 5
8 H 5
9 O 6

. . .

File 17.7: Atom2type. Structure
AtmFrA AtmTotal

AtomNumber1 AtomSymbol1 AtomTypeNumber1
AtomNumber2 AtomSymbol2 AtomTypeNumber2
AtomNumber3 AtomSymbol3 AtomTypeNumber3
AtomNumber4 AtomSymbol4 AtomTypeNumber2
AtomNumber5 AtomSymbol5 AtomTypeNumber2
AtomNumber6 AtomSymbol6 AtomTypeNumber4
AtomNumber7 AtomSymbol7 AtomTypeNumber5
AtomNumber8 AtomSymbol8 AtomTypeNumber5
AtomNumber9 AtomSymbol9 AtomTypeNumber6

. . .

This file can be created with the needle tool. See 20.1, page 153.

interactions Here you can select the type of interactions to take into ac-
count.

inter Only inter fragments interactions: Fragment A × Fragment B
interactions.

all All interactions between atoms: inter fragment interactions plus
intra fragment interactions. To select only the intra interac-
tions, use the atoms2types.txt file to specify the same number of
atoms in the first fragment and the total. See page 129.

number A user defined number of interactions. You have to write a
suitable function to evaluate the coefficients.

Charges This file must include partial charges (in a.u.) for all atoms
when potential 4 is selected (see Table 17.2). Partial charges may
be specified for atom types (File 17.8 and 17.9).
The types must be the same as those from Atom2type file. See 17.6.
It depends on the chosen potential. Note that the type number can
be any one, as long as they are different between them.
The file can be generated from needle. See 20.1.

File 17.8: Charges. Type to charges mapping
1 0.027
2 0.113
3 −0.057
4 −0.01

17.1. Section [job] 131

5 0.001
. . .

File 17.9: Charges. Structure
AtomType1 Charge1
AtomType2 Charge2
AtomType3 Charge3
AtomType4 Charge4
AtomType5 Charge5

. . .

Potential An integer, that specifies the chosen potential as defined in po-
tentials.f file and two options more for setting a potential from source
code in FORTRAN.

Table 17.2: Potential values
Value Coefficients Potential

-1 any any user defined in userpotential.f

0 any any analytical expression defined in an [analytical] section

1 4 V = Ae−Br + C
rD

2 6 V = Ae−Br + C
rD

+ E
rF

3 8 V = Ae−Br + C
rD

+ E
rF

+ G
rH

4 2 V = A

[(
B
r

)12
−

(
B
r

)6
]
+ 332.0532

qiqj
r

Table 17.2 shows the available potentials in potentials.f source file
–positive values from table–, where:

r is the distance between the two atoms whose interaction is calcu-
lated

332.0532 A conversion factor

A, B, C, D, E, F, G The coefficients to be fitted

qi,qj Charges

All coefficients Drives the reading mode of Bounds file. If this variable
is not set, it reads a sequence of coefficients for only one interaction,
and then, the program assumes all the interactions have the same
bounds. If it is set, it reads the bounds for all the coefficients. See
Files 15.3,15.4 and 15.5

Fitting Can be absolute or relative (see below).

132 Intermolecular module: input files

absolute ∑[
(vi −Pot(i))

2 Weight(i)
]

relative ∑[
(vi −Pot(i))

2

v2
i

Weight(i)

]
user this option redirects to a user defined fitting function in the

userpotential.f file. See 18.1 section.

17.2 Section [print]

This section controls how much is printed.

Geometries This parameter controls if the read geometries are printed
on standard output. See 16.

GA settings Prints genetic algorithm settings.

Analytical Prints output from analytical expressions routines.

17.3 Section [analytical]

The reader is referred to Section 18.2, where this is explained in detail.

18Intermolecular module:
Specifiying a new interaction
potential

Simplicity is the ultimate sophistication.

Apple II pc slogan, 1977

Besides the interaction potentials implemented in this code –See Table
17.2–, the user can specify a new potential to fit the interaction energies
of the system. The new potential can be introduced by:

• adding it in the file potentials.f . You have to compile the code.

• modifying the file userpotential.f using it as a template. As above,
you need to compile the code.

• writing an analytical expression. Just write your function, no compile
needed but slower execution. Useful for testing new intermolecular
functions.

18.1 Modifiying potentials.f and userpotential.f

VGLOBALES fortran module

You can use the variables exported by the VGLOBALES module in addi-
tion to your own variables from the USERDATA module to customize your
potential or your fitting function. These are shown in Table 18.1.

Fortran interface subroutines and functions

For an easy customization, some functions and subroutines are provided
in addition to the module VGLOBALES.

133

134 Intermolecular module: Specifiying a new interaction potential

Table 18.1: Module VGLOBALES variables

variable type dimension comments

r double precision (geometries, natom, natom) Calculated interatomic distances for all atoms pairs
v double precision geometries Potential energy for each geometry. Read from en-

ergies file
w double precision geometries Weights. Read from energies file
wdelta double precision geometries Delta for each weight. Read from energies file
wtol double precision geometries Tolerance. Read from energies file
wtype integer geometries Type of weight. Read from energies file
q double precision natom Charges. Read from charges file.
geometries integer - Number of geometries
nprox integer - Number of atoms in fragment A
nsam integer - Number of atoms in fragment B
natom integer . Number total of atoms
ptypes integer - Different types of atoms in fragment A
stypes integer - Different types of atoms in fragment B
potential integer - Type of potential
interactions integer - Number of different interactions
intratypes logical - inter and intra interactions

userdefined logical - user defined interactions
coefficients integer - Number of coefficients
charges logical - If charges file is needed
autoweights logical - If autoweights is active
atom character*2 natom Two character atom labels

ix function

The function ix(i,j,k) organizes the different coefficients into the coeffi-
cient vector.

k is the index of a given coefficient, i.e.: k=1 means A, k=2 means B, etc.
k ranges from 1 to the number of coefficients

i, j are the atoms that define a given interaction for which the coefficients
are defined.

There are three cases:

• inter interactions Atom i belongs to fragment A and j belongs to
fragment B. The atoms of Fragment A range from 1 to nprox, and
those of fragment B range from nprox+1 to natom. See also the
needle tool output, page 154.

• intra + inter interactions Atom i and Atom j are any atom pair.

• user defined number of interactions You cannot use ix for these
types.

coordinates subroutine

The coordinates(geo,atom,x,y,z) subroutine can access the Cartesian co-
ordinates.

geo is the geometry index, ranging from 1 to geometries

atom the atom index in the geometry, ranging from 1 to natom

x, y, z the coordinates returned by subroutine.

18.1. Modifiying potentials.f and userpotential.f 135

Adding a new potential to potentials.f

Introducing a new potential in the program implies to implement it into
potentials.f –File 18.1–, to modify setcoefs (line 3), getcharges (line 28),
potRouter (line 51) and curRouter (line 74) functions, and to write the
corresponding potential functions. Finally, the program has to be recom-
piled.

File 18.1: potentials.f
1 c POTENTIALS
2 c sets the number of coe fs required by potent ia l
3 c
4 integer function se t coe f s (potent ia l)
5 implicit none
6 integer potent ia l
7 integer angetncoefs
8 integer usetcoefs
9 external angetncoefs

10 i f (potent ia l . eq . −1) then
11 se t coe f s=usetcoefs ()
12 else i f (potent ia l . eq . 0) then
13 se t coe f s=angetncoefs ()
14 else i f (potent ia l . eq . 1) then
15 se t coe f s =4
16 else i f (potent ia l . eq . 2) then
17 se t coe f s =6
18 else i f (potent ia l . eq . 3) then
19 se t coe f s =8
20 else i f (potent ia l . eq . 4) then
21 se t coe f s =2
22 else
23 stop ’ s e t coe f s : not implemented ’
24 endif
25 end
26
27 c i f a charge f i l e i s needed
28 c
29 logical function getcharges (potent ia l)
30 implicit none
31 integer potent ia l
32 logical ugetcharges
33 i f (potent ia l . eq . −1) then
34 getcharges=ugetcharges ()
35 else i f (potent ia l . eq . 0) then
36 getcharges =. false .
37 else i f (potent ia l . eq . 1) then
38 getcharges =. false .
39 else i f (potent ia l . eq . 2) then
40 getcharges =. false .
41 else i f (potent ia l . eq . 3) then
42 getcharges =. false .
43 else i f (potent ia l . eq . 4) then
44 getcharges =. true .
45 else
46 stop ’ getcharges : not implemented ’
47 endif
48 end
49
50 c Potential Router , route ca l cu lat ions to the desired potent ia l
51 c
52 subroutine potRouter (geo , x ,nmax, vpot)

136 Intermolecular module: Specifiying a new interaction potential

53 use vglobales
54 integer nmax, geo
55 double precision vpot , x (nmax)
56 i f (potent ia l . eq . −1) then
57 call userpot (geo , x ,nmax, vpot)
58 else i f (potent ia l . eq . 0) then
59 call pot0 (geo , x ,nmax, vpot)
60 else i f (potent ia l . eq . 1) then
61 call pot1 (geo , x ,nmax, vpot)
62 else i f (potent ia l . eq . 2)then
63 call pot2 (geo , x ,nmax, vpot)
64 else i f (potent ia l . eq . 3) then
65 call pot3 (geo , x ,nmax, vpot)
66 else i f (potent ia l . eq . 4) then
67 call pot4 (geo , x ,nmax, vpot)
68 else
69 stop ’ not implemented potent ia l ’
70 endif
71 end
72
73 c Curve Router , route ca l cu lat ions to the desired potent ia l
74 c
75 subroutine curRouter (d , atom1 , atom2 , x ,nmax, vpot)
76 use vglobales
77 integer nmax, atom1 , atom2 , index
78 double precision vpot , x (nmax) ,d
79 double precision analyt ical , userv , v1 , v2 , v3 , v4
80 integer ix
81 i f (potent ia l . eq . −1) then
82 vpot=userv (d , atom1 , atom2 , x ,nmax)
83 else i f (potent ia l . eq . 0) then
84 index=ix (atom1 , atom2 , 1)
85 vpot=analyt i ca l (d , index , x)
86 else i f (potent ia l . eq . 1) then
87 vpot=V1(d , atom1 , atom2 , x ,nmax)
88 else i f (potent ia l . eq . 2)then
89 vpot=V2(d , atom1 , atom2 , x ,nmax)
90 else i f (potent ia l . eq . 3) then
91 vpot=V3(d , atom1 , atom2 , x ,nmax)
92 else i f (potent ia l . eq . 4) then
93 vpot=V4(d , atom1 , atom2 , x ,nmax, q (atom1) ,q (atom2))
94 else
95 stop ’ not implemented potent ia l ’
96 endif
97 end
98
99 c Now, each potent ia l ca l cu lat ion down from here .

100
101 c 0−−−−−−−analyt ical−−−−−−−−−−−−−−
102 subroutine pot0 (geo , x ,nmax, vpot)
103 use vglobales
104 integer nmax, geo , i , j , k , index
105 double precision d , vpot , analyt i ca l
106 external analyt i ca l
107 double precision X(nmax)
108 integer ix
109 vpot =0.0d0
110 do i =1 ,nprox
111 do j =1 ,nsam
112 k= j +nprox
113 d=r (geo , i , k)
114 index=ix (i , k , 1)

18.1. Modifiying potentials.f and userpotential.f 137

115 vpot=vpot+analyt i ca l (d , index , x)
116 enddo
117 enddo
118 return
119 end
120
121 c 1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
122 subroutine pot1 (geo , x ,nmax, vpot)
123 use vglobales
124 integer nmax, geo , i , j , k
125 double precision d , vpot ,V1
126 double precision X(nmax)
127 vpot =0.0d0
128 do i =1 ,nprox
129 do j =1 ,nsam
130 k= j +nprox
131 d=r (geo , i , k)
132 vpot=vpot+V1(d , i , k , x ,nmax)
133 enddo
134 enddo
135 return
136 end
137
138 FUNCTION V1(r , i , j , x ,m)
139 implicit none
140 integer i , j ,m, ix
141 dimension x (m)
142 double precision x , r , a , b , c , d , v1
143 A=x (ix (i , j , 1))
144 B=x (ix (i , j , 2))
145 C=x (ix (i , j , 3))
146 D=x (ix (i , j , 4))
147 V1=A*EXP(−B*R)+C/R**D
148 RETURN
149 END
150
151 c 2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
152 subroutine pot2 (geo , x ,nmax, vpot)
153 use vglobales
154 integer nmax, geo , i , j , k
155 double precision d , vpot ,V2
156 double precision X(nmax)
157 vpot =0.0d0
158 do i =1 ,nprox
159 do j =1 ,nsam
160 k= j +nprox
161 d=r (geo , i , k)
162 vpot=vpot+V2(d , i , k , x ,nmax)
163 enddo
164 enddo
165 return
166 end
167
168 FUNCTION V2(r , i , j , x ,m)
169 implicit none
170 integer i , j ,m, ix
171 dimension x (m)
172 double precision x , r , a , b , c , d , e , f , v2
173 A=x (ix (i , j , 1))
174 B=x (ix (i , j , 2))
175 C=x (ix (i , j , 3))
176 D=x (ix (i , j , 4))

138 Intermolecular module: Specifiying a new interaction potential

177 E=x (ix (i , j , 5))
178 F=x (ix (i , j , 6))
179 V2=A*EXP(−B*R)+C/R**D+E/R**F
180 RETURN
181 END
182
183
184 c 3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
185 subroutine pot3 (geo , x ,nmax, vpot)
186 use vglobales
187 integer nmax, geo , i , j , k
188 double precision d , vpot ,V3
189 double precision X(nmax)
190 vpot =0.0d0
191 do i =1 ,nprox
192 do j =1 ,nsam
193 k= j +nprox
194 d=r (geo , i , k)
195 vpot=vpot+V3(d , i , k , x ,nmax)
196 enddo
197 enddo
198 return
199 end
200
201 FUNCTION V3(r , i , j , x ,m)
202 implicit none
203 integer i , j ,m, ix
204 dimension x (m)
205 double precision x , r , a , b , c , d , e , f , g , h , v3
206 A=x (ix (i , j , 1))
207 B=x (ix (i , j , 2))
208 C=x (ix (i , j , 3))
209 D=x (ix (i , j , 4))
210 E=x (ix (i , j , 5))
211 F=x (ix (i , j , 6))
212 G=x (ix (i , j , 7))
213 H=x (ix (i , j , 8))
214 V3=A*EXP(−B*R)+C/R**D+E/R**F+G/R**H
215 RETURN
216 END
217
218 c 4−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
219 subroutine pot4 (geo , x ,nmax, vpot)
220 use vglobales
221 integer nmax, geo , i , j , k
222 double precision d , vpot ,V4
223 double precision X(nmax)
224 vpot =0.0d0
225 do i =1 ,nprox
226 do j =1 ,nsam
227 k= j +nprox
228 d=r (geo , i , k)
229 vpot=vpot+V4(d , i , k , x ,nmax, q (i) ,q (j))
230 enddo
231 enddo
232 return
233 end
234
235 FUNCTION V4(r , i , j , x ,m, qi , q j)
236 implicit none
237 integer i , j ,m, ix
238 dimension x (m)

18.1. Modifiying potentials.f and userpotential.f 139

239 double precision x , r , a , b
240 double precision v4 , qi , q j
241 A=x (ix (i , j , 1))
242 B=x (ix (i , j , 2))
243 V4=A* ((B/R) **12−(B/R) **6)+qi * qj /R*332.0532d0
244 RETURN
245 END

setcoefs returns the number of coefficients used per potential.

getcharges returns true if the formula needs the charges file, if not
false.

potRouter selects the function to calculate.

curRouter is used by fitview to plot two body interactions.

Some other variables are loaded into functions via the use statement
or they are available via interface functions or subroutines –see 18.1–.

Changing userpotential.f
The user potential file is a template. Using potential=-1 in the [job] sec-
tion, the program understands that it has to employ this file. The included
template (File 18.2) contains, as an example, potential number 1 (see 17.2
table). To implement a new potential function you only have to:

• change line number 34, the number of coefficients.

• change line 44 if the charges file is needed.

• change lines from 86 to 91 to code the potential formula.

• additionally, you can specify here a user fitting function –page 132–.

• if you need to share or load some variables, you can use the USER-
DATA module.

You can use the function ix (see page 134) to access individual co-
efficients or use the subroutine coordinates to access individual atom
coordinates.

File 18.2: userpotential.f
1 c USER POTENTIAL
2 c please change as needed
3
4
5 c USER DATA MODULE
6
7 module userdata
8 implicit none
9 save

10 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
11 c define your variables here
12
13 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^
14 end module userdata

140 Intermolecular module: Specifiying a new interaction potential

15
16
17 c USERREAD SUBROUTINE
18
19 subroutine userread ()
20 use userdata
21 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
22 c your code to read external f i l e s here
23
24
25 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^
26 end
27
28
29 C USETCOEFS FUNCTION
30
31 integer function usetcoefs ()
32 c here spec i fy the number of c o e f f i c i e n t s
33 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
34 usetcoefs=4
35 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^
36 end
37
38
39 c UGETCHARGES FUNCTION
40
41 logical function ugetcharges ()
42 c spec i fy i f you need a charges f i l e
43 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
44 ugetcharges =. false .
45 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^
46 end
47
48 c USERPOT SUBROUTINE
49
50 subroutine userpot (geo , x ,nmax, vpot)
51 use vglobales
52 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 c to use your external data
54 use userdata
55 c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 integer nmax, geo , i , j , k
57 double precision d , vpot , userv
58 double precision X(nmax)
59 c v−−−−−−−CHANGE−ME−IF−NEEDED−−−−−−−−−−v
60 vpot =0.0d0
61 c note : here a l l interact ions are calculated
62 do i =1 ,nprox
63 do j =1 ,nsam
64 k= j +nprox
65 d=r (geo , i , k)
66 vpot=vpot+userv (d , i , k , x ,nmax)
67 enddo
68 enddo
69 c −̂−−−−−−CHANGE−ME−IF−NEEDED−−−−−−−−−−^
70 return
71 end
72
73
74 c FUNCTION USER POTENTIAL
75 c write userv using ix function to access
76 c individual c o e f f i c i e n t s .

18.2. Analytical expression 141

77 c use CALL coordinates (geometry , atom , x , y , z)
78 c to access individual coordinates .
79
80 double precision FUNCTION userv (r , i , j , x ,m)
81 implicit none
82 integer i , j ,m, ix
83 dimension x (m)
84 c note : here ONE interact ion i s calculated
85 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
86 double precision x , r , a , b , c , d
87 A=x (ix (i , j , 1))
88 B=x (ix (i , j , 2))
89 C=x (ix (i , j , 3))
90 D=x (ix (i , j , 4))
91 userv=A*EXP(−B*R)+C/R**D
92 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^
93 RETURN
94 END
95
96
97 c USER FITTING FUNCTION
98 c write here the user f i t t i n g function
99 c i f you only need the f i t t i n g function

100 c leave the l ine " c a l l potRouter . . . " unchanged
101 c and change the l ine " u s e r f i t t i n g = . . . " with your
102 c f i t t i n g function .
103 c i f you have a userv function (above this) , you can
104 c use i t here , or access i t via potRouter
105
106 double precision function u s e r f i t t i n g (x ,m, geo)
107 use vglobales
108 use userdata
109 double precision x , vpot
110 integer m, geo
111 dimension x (m)
112 c v−−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−v
113 call potRouter (geo , x ,m, vpot)
114 u s e r f i t t i n g =(v (geo)−vpot) * (v (geo)−vpot)
115 c −̂−−−−−−CHANGE−ME−−−−−−−−−−−−−−−−−−−^
116 return
117 end

The subroutine userread is called after reading the job settings and
associated data, so it can be used to load data to the userdata module for
later use in the user potential function or subroutine (userv or userpot). A
complete example can be found in the folder n2n2-example.

In order to use fitview to plot two body interactions you need to provide
curRouter with a function capable of calculate the potential using the
atom pair, the distance between them and the coefficients as arguments.

18.2 Analytical expression

If you do not want to write code, the potential function can be introduced
as an analytical expression just by writing an analytic expression or an-
alytic formulae in a file. Note that an analytical expression runs about
ten times slower compared with the above compiled version.

The analytical expression introduced by the user must be checked, com-
piled to intermediate code, and finally, run in a virtual FPU with the cor-

142 Intermolecular module: Specifiying a new interaction potential

rect variables loaded. The number of coefficients per interaction is auto-
matically counted from the expression.

First of all, you have to select potential: 0 in the [job] section, and a
mandatory [analytical] section must be fulfilled with each of its parame-
ters. The table 18.2 shows and explains them.

Table 18.2: Analyltical potential parameters

Section Parameter Type comments

analytical

expression string Specifies a whole section where the
expression is defined

potential string Variable used for potential

distance string Variable used for distance between
atoms

coefficients string

Comma-separated value lists of coef-
ficients used in expression. These,
taking in account interactions, build
the vector optimized by GAFit

An example can be seen in File 18.3. It also shows different forms to
express the potential.

As you see in File 18.3, “potential 5” is selected so the section [poten-
tial 5] contains the expression to be calculated.

The distance variable is named “dist”, and potential “pot”. The coef-
ficients are: “aaa”, “bbb”, “c1”, “c2”, “d1”, “d2”, “e1” and “e2”.

The expression is divided in five parts, using intermediate variables
“v1”, “v2”, “v3” and “v4” to hold partial calculations. These variables are
automatically defined by the compiler algorithm. In fact, this potential is
number 3 standard potential defined in table 17.2.

The section [potential 3] shows a different way to use the same po-
tential. Section [potential 1] and [potential 2] are the first and second
standard potentials from table 17.2.

18.2. Analytical expression 143

File 18.3: job.txt. Analytical expression options
[job]
runs :−−→−−−−−−−→ 1
command: . / external−intermolecular . sh
evaluations :−−−→ 5000000
Geometries : coord . molden
Energies : energies . txt
Atom2type : atom2types . txt
Bounds : bounds . txt
Charges : charges . txt
Potential : 0
All c o e f f i c i e n t s : no

[print]
geometries : yes
runs : yes
ga set t ings : yes
analyt i ca l : yes

[analyt i ca l]
expression : potent ia l 5
distance : d i s t
potent ia l : pot
c o e f f i c i e n t s : aaa , bbb , c1 , c2 , d1 , d2 , e1 , e2

[potent ia l 1]
V=A*EXP(−B*R)+C/R**D;

[potent ia l 2]
v=a*exp(−b*r)+c / r **d+e / r ** f ;

[potent ia l 3]
enum = 27.182818284e−1 ;
v1 = aaa * pow (enum , −bbb * d is t) ;
v2 = c1 / pow (d is t , c2) ;
v3 = d1 / d i s t ** d2 ;
v4 = e1 / d i s t ** e2 ;
pot = v1 + v2 + v3 + v4

[potent ia l 5]
v1 = aaa * exp (−bbb * d is t) ;
v2 = c1 / pow (d is t , c2) ;
v3 = d1 / d i s t ** d2 ;
v4 = e1 / d i s t ^ e2 ;
pot = v1 + v2 + v3 + v4

Potential: 0

Analytical expression
section

Selected analytical ex-
pression

Operators and functions supported in expressions are shown in table 18.3.
Note that ab can be input as “a**b”, “a^b” or “pow(a,b)”1.

Defining constants and using floating point notation is also supported
as shown in File 18.3, section [potential 3].

To check your potential definition you can use ufpu. See 20.3.

1Like fortran, basic or C languages, respectively

144 Intermolecular module: Specifiying a new interaction potential

Table 18.3: Operators and functions supported in expressions

Operators Precedence Example

= assignment 0 a=b
+ addition 1 a+b
- subtraction 1 a-b
* multiplication 2 a*b
/ division 2 a/b

unary + unary plus 3 +a
unary - unary minus 3 -a

** a raised by power b, ab 4 a**b
^ a raised by power b, ab 4 a^b

Puntuaction

() change precedence (a+b)*c
, comma, separate argu-

ments in functions
pow(a,b)

; semicolon, separate in-
dividual expressions

a=b+c; d=e+f

Functions

exp number e raised by
power a, ea

exp(a)

pow a raised by power b, ab pow(a,b)
sin sine of a (in radians),

sin(a)
sin(a)

cos cosine of a (in radians),
cos(a)

cos(a)

19Intermolecular module: Fpu
simulator

Сколько языков ты знаешь - столько раз
ты человек..

А.П.Чехов

19.1 Fpu overview

Figure 19.1: uCompiler compiles the expression into fpu machine code.

Fpu is a function that emulates a Floating Point Unit (FPU) with its
own instruction set in order to calculate analytical expressions. A re-
lated function, uCompiler, compile each source expression to fpu ma-
chine bytecode –Figure 19.1–, so it can be executed by a Fpu instance
–Figure 19.2–.

Source code is included in the folders fpu, compiler, pack, bytecodes and
nullist. A complete implementation is the ufpu tool. See Section 20.3.

Figure 19.3 shows a Fpu overview. It contains:

address stack used to operate, like to a real CPU stack pointer.

memory pool an array referencing each allocated double, always grow-
ing up. There is no mechanism to resize down allocated memory,
except resetting or deleting the Fpu from memory. It is like a real
CPU stack.

145

146 Intermolecular module: Fpu simulator

Figure 19.2: Fpu load the machine code and process the variables to obtain
V value.

Table 19.1: Fpu source code

Folder Comments

fpu implements the Fpu function
compiler implements the bytecode compiler

pack bytecode packaging (as file or in memory)
bytecodes bytecode instructions helper functions

nullist implements stacks using null terminated lists of strings

program counter memory address pointing to the instruction to be pro-
cessed, like a real CPU program counter.

status flags register which is set on error like a real CPU flags.

program A continuous memory block containing the loaded program op-
codes. The data and the program code does not share the same "mem-
ory", so conceptually this is a virtual machine with a Harvard archi-
tecture1.

The supported instruction set is shown in table 19.2.

19.2 Mode of operation

A program example is shown in File 19.2, which is generated using the
job.txt file configuration 19.1. Semicolons are interpreted as comments.

File 19.1: Job.txt to generate the File 19.2

[analyt i ca l]
expression : potent ia l 1
distance : r
potent ia l : v
c o e f f i c i e n t s : a , b , c , d

[potent ia l 1]
V=A*EXP(−B*R)+C/R**D;

1The opposite is the von Neumann’s architecture where data and program code are loaded
in the same memory. This is the most widely used if not the unique.

19.2. Mode of operation 147

Figure 19.3: Fpu overview

Address#0

Address#1

Address#2

Address#3

Address#4

Address#5

Address Stack

Double

Double

Double

Double

Double

Double

Double

Double

Double

Double

Main Memory

N0 Address

N1 Address

N2 Address

N3 Address

N4 Address

N5 Address

N6 Address

N7 Address

N8 Address

N9 Address

Memory Pool

Program Counter Flags 0 0 0

Program bytecode . . . apush 0 apush 1 neg mult . . .

148 Intermolecular module: Fpu simulator

Table 19.2: Fpu instruction set

Instruction Parameters Comments

NOP No operation
APUSH N pushes address of memory pool N onto stack

PUSH A allocates memory for value A incrementing memory pool, and
pushes its address onto stack

POP pops from stack
MOVE N copies top of stack value to Nth memory pool reference and

leaves stack unchanged
STORE moves value of top of stack to allocation referenced by top of

stack - 1. Pops both addresses from stack
CLRF clears status flags
ADD adds two top most referenced values of stack, pops both from

stack, and allocates memory for result pushing its address
onto it

SUB same as add but substracting
MULT same as add but multiplicating

DIV same as add but dividing
NEG pops out top of stack reference, allocating memory for its

negated value and pushing onto it
POW raises power of the two top most values of stack popping them,

allocates memory for result and pushes onto it
EXP allocates memory for the result of etopmoststack, pops the top

most stack references, and pushes onto it the result reference
SIN allocates memory for the result of sin(topmoststack), pops the

top most stack references, and pushes onto it the result refer-
ence

COS allocates memory for the result of cos(topmoststack), pops the
top most stack references, and pushes onto it the result refer-
ence

File 19.2: Bytecode source example
; v :0
; a :1
; b :2
; r :3
; c :4
; d :5
apush 0
apush 1
apush 2
neg
apush 3
mult
exp
mult
apush 4
apush 3
apush 5
pow
div
add
store

As shown in File 19.2, a memory block must be passed to Fpu contain-
ing the variables v, a, b, r, c, d in the correct order, as it could be seen in

19.2. Mode of operation 149

the first lines of the file –comments which are generated by the compiler
as a remark–. At this time, the Address Stack is empty, so v, a and b are
pushed.

empty v

apush 0

a
v

apush 1

b
a
v

apush 2

-b
a
v

neg

r
-b
a
v

apush 3

-b*r
a
v

mult

Next, the value of the top of the stack is negated (−b). r is pushed and
multiplied by −b, so on top of the stack we have −b ∗ r.

The e−br is calculated and multiplied by a leaving it in the top of stack
again.

Figure 19.4: Initial status

empty

Address Stack

address of d

address of c

address of r

address of b

address of a

address of v

Memory Pool

d
c
r

b
a
v

Main Memory

Memory Block
passed as
parameter

From the memory management point of view, the first six operations
from File 19.2 are shown in figures 19.4 to 19.8. A memory block with the
program variables is passed to Fpu.

New intermediate results generate new allocations of memory, all of
them are taken into account by the Memory Pool array, which always
grows. At the end, all of them are freed except the initial memory block
with the initial variables returned to the caller.

150 Intermolecular module: Fpu simulator

Figure 19.5: apush 0, apush 1, apush 2

address of b
address of a
address of v

Address Stack

address of d
address of c
address of r
address of b
address of a
address of v

Memory Pool

d
c
r
b
a
v

Main Memory

Figure 19.6: neg

address of -b
address of a
address of v

Address Stack

address of -b
address of d
address of c
address of r
address of b
address of a
address of v

Memory Pool

d
c
r
b
a
v

-b

Main Memory

Allocated

19.2. Mode of operation 151

Figure 19.7: apush 3

address of r
address of -b
address of a
address of v

Address Stack

address of r
address of -b
address of d
address of c
address of r
address of b
address of a
address of v

Memory Pool

d
c
r
b
a
v

-b

Main Memory

Figure 19.8: mult

address of −b ∗ r
address of a
address of v

Address Stack

address of −b ∗ r
address of r
address of -b
address of d
address of c
address of r
address of b
address of a
address of v

Memory Pool

d
c
r
b
a
v

−b ∗ r

-b

Main Memory

Allocated

20Intermolecular module: Tools

Contrary to popular belief, Unix is user
friendly. It just happens to be very
selective about who it decides to make
friends with.

Anonymous

20.1 needle

needle is a perl script used to distinguish different types of atoms, which
are needed to calculate the different types of interactions between Frag-
ment A and Fragment B.

$ needle -h
needle v0.5 (c)GAFit toolkit - 2010-2013

collects sets of equivalent atoms
input: any geometries input file

-d debug
-p N fragment A atoms
-o creates needed files

The atoms considered are: F, H, Si, O, N, S, C and Au. If any atom is
different from those, it must be previously coded.

$ needle -p 18 moldeni.dat
needle v0.5 (c)GAFit toolkit - 2010-2013

collects sets of equivalent atoms
input: any geometries input file

Number(Atom)
1. 1(N)
2. 2(H) 4(H) 5(H)
3. 3(C)
4. 6(C)
5. 7(H) 8(H)
6. 9(O)
7. 10(N)
8. 11(H)
9. 12(C)

153

154 Intermolecular module: Tools

10. 13(C)
11. 14(H) 15(H)
12. 16(O)
13. 17(O)
14. 18(H)
15. 19(C) 22(C) 33(C) ...
16. 20(C) 21(C) 34(C) ...
17. 23(F) 24(F) 29(F) ...
18. 25(F) 26(F) 27(F) ...

Results:
1
2 4 5
3
6
7 8
9
10
11
12
13
14 15
16
17
18
19 22 33 ...
20 21 34 ...
23 24 29 ...
25 26 27 ...

Fragment A atoms:18
There are 18 different atom types. Fragment A:14, Fragment B:4, Common types:0
Total diff interactions: a vector of 56 coefs, X(k)
Vector Atom2Type:
Atom2Type(i)={1 2 3 2 2 4 ... 17 17 17 17 }

Options:

-d Debug output.

-p N Indicates the number of atoms into fragment A, required if -o is used.

-o Creates output files: atom2type.txt and charges.txt as a template to be
modified as desired. Note that charges.txt assigns a dummy value of
0 to each type of atom, therefore the file must be manually edited.
See 17.1.

Notice that needle only reads the first molden geometry in the file, so its
input can be the geometries file used for the job.

The algorithm used in needle is not bulletproof, so pay special attention
to the atom2type.txt file.

20.2 fitview

An utility to write and plot data from results. fitview generates two files
per plot, one contains the data (file.dat) and the other (file.plt) the gnu-
plot1 commands to print out the plot. So to plot, you can type:

$gnuplot file.plt

The plots produced by fitview are one per two body interaction, a gen-
eral evaluation including all geometries found in the geometry file and all
the two body interactions in the same plot for a quick look:

1Home page: http://www.gnuplot.info/. Gnuplot is a portable command-line driven
graphing utility for Linux, OS/2, MS Windows, OSX, VMS, and many other platforms.

http://www.gnuplot.info/

20.2. fitview 155

• general_evaluation.plt

• general_evaluation.dat

• 2body-type-1.dat

• 2body-type-1.plt

• 2body-type-2.dat

• 2body-type-2.plt

• . . .

• 2body-type-n.dat

• 2body-type-n.plt

• 2body-type-all.plt

$ fitview -h
fitview v0.3 (c)GAFit toolkit - 2010-2013
Usage: fitview [tag] [-l value] [-u value] [-d value] [-h]

-l lower bound
-u uper bound
-d delta
-e gnuplot supports enhanced terminal
-h this help
-g general evaluation only
default [0.500000,10.000000] delta: 0.010000

In the command line you can specify the lower and upper bound, the
increment delta and whether your local version of gnuplot supports the
enhanced terminal to print the subscripts needed for the data labels.

Figure 20.1: Two body interaction example plot.

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10

P
ot

en
tia

l

R

Interaction)type)10

Ex:)H)(10)-Xe(14)

156 Intermolecular module: Tools

fitview loads the best.txt coefficients and honors the job configuration
found in the current working directory using the job.txt file therein.

If a tag is included in the command line, it processes the best.tag.txt
and the output files overwrites the previous ones. Note that the result file
names do not change.

In case of an external potential, fitview refuses to run. Take special
care using a potential of your own: See 18.1.

20.3 ufpu

An utility to test analytical expressions configuration, following the next
steps:

1. ufpu searches the job file in the current working directory for an
[analytical] section2.

2. Checks and validates the expression if found.

3. Compiles generating two files: prog.uxe and prog.usm, and extracts
the variables to be used. prog.uxe is the packed bytecode result of
compilation. prog.usm is the result assembler for the same expres-
sion.

4. Loads the prog.uxe file.

5. Asks for each variable.

6. Runs and shows the results.

7. Resets and goes to 5

The analytical subroutines do the same. At GAFit initialization, per-
forms the steps from 1 through 4.

Each time a potential calculation is requested, it loads the Fpu with
the appropriate values in a memory block, runs it, extracts the result and
resets again the Fpu. See 19.

The output shown was generated using File 18.3.

uFpu v0.2 (c)GAFit toolkit - 2013

expression name: "potential 5"
potential: pot
distance: dist
coefficients: aaa, bbb, c1, c2, d1, d2, e1, e2

Expression found:

v1 = aaa * exp (-bbb * dist) ;
v2 = c1 / pow (dist , c2) ;
v3 = d1 / dist ** d2 ;
v4 = e1 / dist ^ e2 ;
pot = v1 + v2 + v3 + v4

Variables found in expression: v1 aaa bbb dist v2 c1 c2 v3 d1 d2 v4 e1 e2 pot
Expression code OK
pot index 13
dist index 3
8 coefficients found

INPUT

2Regardless the potential value in the [job] section.

20.3. ufpu 157

distance variable (dist)=1
coefficient aaa=1
coefficient bbb=1
coefficient c1=1
coefficient c2=1
coefficient d1=1
coefficient d2=1
coefficient e1=1
coefficient e2=1

After run: Memory (total used 27) v1=0.367879 aaa=1.000000 bbb=1.000000
dist=1.000000 v2=1.000000 c1=1.000000 c2=1.000000 v3=1.000000 d1=1.000000
d2=1.000000 v4=1.000000 e1=1.000000 e2=1.000000 pot=3.367879

RESULT POTENTIAL:3.367879

Press ’q’/INTRO to quit, another key/INTRO to repeat

21MOPAC module

To err is human, but to really screw
things up you need a computer.

Bill Vaughn

An additional feature of GAFit is the possibility of parametrizing a
semiempirical Hamiltonian. The current version of GAFit supports MOPAC
–from 2009 to 2016– as the external program to compute the PES of our
system. In the example given in Section 12 the MOPAC interface is used
to parametrize the intramolecular PES of vinyl cyanide.

The details of how GAFit works with an external program–or external
potential– are explained in the following.

21.1 External potential

The external potential works as follows:

• GAFit generates a whole generation, where each individual is a co-
efficient vector.

• for each individual,

– the coefficients are written in the file named in the external
input option of the [job] section.

– the external program specified in the option command is run.

* The external program must read the external input file,

* doing its calculations,

* and writing the file named in the external fit option of the
[job].

– GAFit reads the external fit file.

159

160 MOPAC module

• GAFit using the fit, given by the external program, applies the ge-
netic operators to create a new generation.

If the bulk option is chosen, an entire generation is written to the ex-
ternal input file, and the external command must write into the ex-
ternal fit file all the individuals fitting values. This option speeds up
calculations.

In all cases, the command is executed passing one argument in the
command line: the number of the individuals that were written to the
external input file.

For example, if the command is mopac2009.sh, and the job is an ex-
ternal bulk passing an entire generation of 100 coefficient vectors, the
command line executed by the shell is:

$ mopac2009.sh 100

external input examples are given in Files 15.8 and 15.9. external
fit examples are the Files 15.10 and 15.11

GAFit only evaluates if there is a command processor available –i.e.
sh– and the coefficients value. No other checks are performed.

Autoconfigure
If the option external auto is chosen, the external command can configure
GAFit. At the beginning, GAFit executes the external command passing
an argument of "0". If the external command is mopac2009.sh, the com-
mand line executed by the shell is:

$ mopac2009.sh 0

The external command must answer with a file named "response" with the
options requested. This file follows the job.txt format. An example from
the MOPAC interface is shown below.

File 21.1: response
[job]
type : external bulk
c o e f f i c i e n t s : 16
external input : mopac . input
external f i t : mopac . f i t
bounds : bounds . txt

[c o e f f i c i e n t names]
BETAS H
ZS H
ALP H
GSS H
USS C
UPP C
BETAS C
BETAP C
ZS C
ZP C
ALP C
GSS C
GSP C

21.2. Interfacing with MOPAC 2009 161

GPP C
GP2 C
HSP C

Note that GAFit does not check if there is a response file before the
call. All is ok if it finds one, independently of whether it has been created
by the system call or not.

Stopping an external job

You can stop a running job writing a stop file in the folder where it is
running. The stop file’s name is __STOP__, and the text it contains is
whatever you want.

$ echo ‘‘stop job’’> __STOP__

A first approach to the general problem of launching an external pro-
gram is shown as a guideline for development to complement section 21.1
with a useful case: MOPAC 2009.

Later, a better solution –shepherd–, specifically designed to solve some
problems found while testing these scripts, is developed and discussed in
Section 22.

21.2 Interfacing with MOPAC 2009

Interfacing with MOPAC 2009 is achieved using three new tools:

injector Written in C, is responsible for:

• answering the GAFit external auto configuration option.

• creating the MOPAC’s external file parameters.

• creating the MOPAC’s input file.

extractor Written in perl and using perl’s special characteristics to ex-
tract text, it is in charge of:

• extracting and digesting data from the MOPAC output to a in-
termediate file with a format for easy retrieve by the next tool.

• dealing with MOPAC’s calculation failures.

fitter Written in fortran,

• calculates the fitting.

• writes the file with the fits to be read by GAFit.

Two templates are used to create the files needed by MOPAC 2009.

coefficients template (COEFS_TEMPLATE) is used to extract the co-
efficients values and replace them with the ones obtained by GAFit
and to count and assign names to GAFit coefficients too.

162 MOPAC module
F

igure
21.1:M

O
PA

C
2009

interface:norm
aloperation

G
A

F
it

external-m
opac2009.sh

N

injector
N

E
X

T
E

R
N

A
L

_IN
P

U
T

bounds.txt

C
O

E
F

S_T
E

M
P

L
A

T
E

M
O

PA
C

_T
E

M
P

L
A

T
E

M
O

PA
C

_M
O

P

M
O

PA
C

2009
(or

shepherd)

M
O

PA
C

_M
O

P
.out

extractor
NE

X
T

R
A

C
T

E
D

_D
A

T
A

fitter
N

[extracted-data
[external-fit]]

conditions.txt

E
X

T
E

R
N

A
L

_F
IT

AB

C

D
...

21.2. Interfacing with MOPAC 2009 163

Figure 21.2: MOPAC 2009 interface: autoconfigure

GAFit

external-mopac2009.sh 0

injector 0

responseCOEFS_TEMPLATE

MOPAC calculation template (MOPAC_TEMPLATE), contains one or
more calculations. For example: one for the reactants, one for the TS
and a third one for the products (calculations 1, 2 and 3 respectively).
It is used to generate a continuous and unique file with all calcula-
tions, which is employed as input of MOPAC 2009. There are places,
marked with an @, where the symbol is replaced by the file name
of the coefficients template, containing the coefficients obtained by
GAFit.

If there are two calculations in the MOPAC calculation template and
GAFit exports 100 sets of coefficients per generation, then the unique file
generated contains 200 calculations, and also, there are 100 independent
files generated from the coefficients template, each one with a complete set
of coefficients replaced.

These files are named A . . . Z, AA . . . AZ . . . and so on.
Figures 21.1 and 21.2 show the relations between programs and files:

• Dashed blue lines indicate that a tool uses the file as input.

• red lines indicates that a tool creates the file.

• black lines indicate calls to execute a tool.

• Files filled in yellow indicate that they must be created or given by
the user.

There are environmental variables, shown in Table 21.1, which can be
set to control the file names.

Notice that for the fitter point of view, EXTERNAL_FIT and EXTRA
CTED_DATA are command line arguments.

164 MOPAC module

Table 21.1: Environmental variables

Variable Default value Tools

COEFS_TEMPLATE template.coefs injector
MOPAC_TEMPLATE template.mop injector

MOPAC_MOP mopac_input.mop injector, MOPAC 2009, extrac-
tor, shepherd

EXTERNAL_INPUT mopac.input GAFit, injector
EXTERNAL_FIT mopac.fit GAFit

EXTRACTED_DATA extracted.data extractor
BOUNDS_FILE bounds.txt GAFit, injector

21.3 External command

GAFit only calls an external shell script: external-mopac2009.sh, or the
name given in job.txt. There is a complete example in the folder mopac-
example which can be examined in the File 21.2. A minimal implementa-
tion due to the defaults could be the one in File 21.4.

File 21.2: external-mopac2009.sh
1 # ! / bin / sh
2 export MOPAC_LICENSE=$HOME/ mopac2009
3
4 export COEFS_TEMPLATE=" template . coe fs "
5 export MOPAC_TEMPLATE=" template .mop"
6 export MOPAC_MOP=" mopac_input .mop"
7 export EXTERNAL_INPUT="mopac . input "
8 export EXTERNAL_FIT="mopac . f i t "
9 export EXTRACTED_DATA=" extracted . data "

10 export BOUNDS_FILE=" bounds . txt "
11
12 i n j e c t o r $1
13 i f ["$1 " −ne "0"]
14 then
15 $MOPAC_LICENSE/MOPAC2009. exe $MOPAC_MOP
16 extractor $1
17 f i t t e r $1 $EXTRACTED_DATA $EXTERNAL_FIT
18 f i

21.4 injector

injector is a program written in C. The syntax is

injector number-of-vectors [bulk]

where number-of-vectors and bulk are parameters explained below.

Configuration

If the external auto option is used, GAFit calls the external command pass-
ing a “0” as first parameter, so the injector creates the file response and

21.4. injector 165

GAFit uses this information to configure itself. This file is deleted the first
time injector runs in the normal operation.

File 21.3: job.txt in mopac-example
[parameters]
population :−−−−→ 100
crossover rate :−→ 0.75
blx_alpha :−−−−−→ 0.5
mutation rate :−→ 0.1
e l i t i sm :−−−−−−−→ yes
tournament s ize : 5
crossover : sbx
mutation : sigma
sigma :−→−−−−−−−→ 0.1
d i rec t i on :−−−−−→ min

[job]
runs :−−→−−−−−−−→1
evaluations :−−−→5000
type : external auto
command: external−mopac2009 . sh

[print]
print runs : yes

The data needed to create the response file is obtained from environ-
mental variables and from the COEFS_TEMPLATE file1. If it is not set,
there are default values for them (see Table 21.1).

A minimal external script is shown in File 21.4. In this case, the exter-
nal auto option defaults to external. To override defaults use bulk option
to change to external bulk.

File 21.4: Minimal external-mopac2009.sh
1 # ! / bin / sh
2 export MOPAC_LICENSE=$HOME/ mopac2009
3
4 export MOPAC_MOP=" mopac_input .mop"
5
6 i n j e c t o r $1
7 i f ["$1 " −ne "0"]
8 then
9 $MOPAC_LICENSE/MOPAC2009. exe $MOPAC_MOP

10 extractor $1
11 f i t t e r $1
12 f i

Normal operation
If the parameter is not “0”, it must be the number of coefficient vectors,
which are written in the file EXTERNAL_INPUT.

The injector reads EXTERNAL_INPUT and using COEFS_TEMPL
ATE and MOPAC_TEMPLATE it creates the MOPAC_MOP file and
its relative external coefficients files, which are named according to the
default option for the coefficients names. See 15.4.

1Number and name of the coefficients.

166 MOPAC module

File 21.5: COEFS_TEMPLATE file: template.coefs
BETAS H −6.173787
ZS H 1.188078
ALP H 2.882324
GSS H 12.848
USS C −52.028658
UPP C −39.614239
BETAS C −15.715783
BETAP C −7.719283
ZS C 1.808665
ZP C 1.685116
ALP C 2.648274
GSS C 12.23
GSP C 11.47
GPP C 11.08
GP2 C 9.84
HSP C 2.43

At the configuration stage, the file COEFS_TEMPLATE is analyzed;
this file provides the number of coefficients and their names.

In a normal operation, the file is replicated to generate the files needed
to complement the jobs in MOPAC_TEMPLATE.

File 21.6: MOPAC_TEMPLATE file: template.mop
AM1 prec ise external=@ geo−ok nosym

H 0.00000000 +0 0.0000000 +0 0.0000000 +0 '
& 0.1275

C 1.09852142 +1 0.0000000 +0 0.0000000 +0 1 0 '
& 0 −0.1565

C 1.33416836 +1 123.1900576 +1 0.0000000 +0 2 1 '
& 0 −0.0994

H 1.09879509 +1 115.3226363 +1 179.9929115 +1 2 1 '
& 3 0.1270

H 1.10533055 +1 122.1640414 +1 179.9944757 +1 3 2 '
& 1 0.1514

C 1.41933576 +1 114.5208739 +1 179.9977508 +1 3 5 '
& 2 −0.1114

N 1.16399609 +1 179.1128557 +1 1.2752342 +1 6 3 '
& 5 −0.0387

oldgeo AM1 prec ise external=@ force geo−ok nosym

AM1 prec ise ts external=@ geo−ok nosym

C 0.000000 0 0.000000 0 0.000000 0 0 0 0
C 1.310566 1 0.000000 0 0.000000 0 1 0 0
C 2.179061 1 104.132782 1 0.000000 0 2 1 0
N 1.160916 1 160.493759 1 0.000000 1 3 2 1
H 1.076805 1 126.972862 1 0.000000 1 1 2 3
H 1.084538 1 114.088127 1 180.000000 1 1 2 3
H 1.208813 1 35.831474 1 180.000000 1 2 3 4

MOPAC_MOP is created clonning MOPAC_TEMPLATE and replac-
ing the symbol @ with the files obtained changing parametres in the COE
FS_TEMPLATE file, one per each different coefficient vector.

21.5. extractor 167

Therefore, if the external bulk option is used, and there are 100 coef-
ficients per generation, one MOPAC_MOP file is generated referencing
100 different files, each one being a COEFS_TEMPLATE clone with the
parameters obtained from GAFit external input changed.

21.5 extractor

extractor is a perl script which analyses the MOPAC 2009 output file, the
MOPAC_MOP file replacing the .mop extension by .out. I.e. if MOPAC_
MOP is the default mopac_input.mop then the MOPAC 2009 output is m
opac_input.out.

Syntax:

extractor number-of-vectors

File 21.7: Extractor first lines
1 # ! / usr / bin / perl
2
3 use s t r i c t ;
4
5 use constant {
6 HEATFCAL => 0 ,
7 HEATFJUL => 1 ,
8 NUMATOMS => 2 ,
9 CARTESIAN => 3 ,

10 NUMFREQ => 4 ,
11 FREQUENCIES => 5 ,
12 CALCPERIND => 6 ,
13 GRADIENTS => 7 ,
14 NUMCONF => 8 ,
15 DIPXYZ => 9 ,
16 EEL => 10 ,
17 } ;
18
19 my($CALS_TO_JOULES) =4.1868;
20
21 my (%defaults) = (
22 ’COEFS_TEMPLATE ’ => " template . coe fs " ,
23 ’MOPAC_TEMPLATE ’ => " template .mop" ,
24 ’MOPAC_MOP’ => " mopac_input .mop" ,
25 ’EXTERNAL_INPUT ’ => "mopac . input " ,
26 ’EXTERNAL_FIT ’ => "mopac . f i t " ,
27 ’EXTRACTED_DATA ’ => " extracted . data " ,
28 ’CONDITIONS_FIT ’ => " condit ions . txt " ,
29 ’TOOLS_OUTPUT ’ => "no" ,
30) ;
31
32 my (
33 $CoefsTemplate , $MopacTemplate , $MopacMop,
34 $ExternalInput , $ExternalFit , $ToolsOutput ,
35 $MopacOut , $Extracted , $ConditionsFit ,
36) ;
37
38 my (@mopErrors) = (
39 "TOO MANY ITERATIONS IN LAMDA BISECT" ,
40 "CALCULATION IS TERMINATED TO AVOID ZERO DIVIDE" ,
41 "GRADIENT IS TOO LARGE TO ALLOW FORCE MATRIX TO BE CALCULATED

" ,

168 MOPAC module

42 "THIS IS A FATAL ERROR, RUN STOPPED IN GMETRY" ,
43 "TS FAILED TO LOCATE TRANSITION STATE" ,
44 "A FAILURE HAS OCCURRED, TREAT RESULTS WITH CAUTION! ! " ,
45 "EXCESS NUMBER OF OPTIMIZATION CYCLES" ,
46 "SHEPHERD NON RECOVERABLE ERROR"
47) ;

The gathered information is saved in an intermediate file –EXTRACT
ED_DATA– with a suitable format to be processed later.

extractor accepts one command line parameter: the number of indi-
vidual coefficients vectors used. The rest of the configuration data must
be passed through environmental variables or use the defaults. See Table
21.1 and File 21.7, line 15.

extractor also checks for MOPAC 2009 failure, i.e., when MOPAC
2009 is not able to achieve a result with the given parameters. Special
care must be taken to test this and, if needed, change the @mopErrors ar-
ray in the line 36 of the script –File 21.7–, adding the new error texts not
listed before in the array found in the MOPAC 2009 output.

Also, change the @mopSTOPErrors array in line 40 of the script adding
the fatal error texts2 found in the MOPAC 2009 output which must stop
the entire job.

File 21.8: extracted.data
0 0 6
3
13 0 0
−879.04453
13 0 1
−3677.92230
13 0 2
7
13 0 3
1 H 0.0000 0.0000 0.0000
13 0 3
2 C 50.4746 0.0000 0.0000
13 0 3
3 C 84.8574 36.9379 0.0000
13 0 3
4 H 54.3105 −50.2347 −0.8804
13 0 3
5 H 122.4161 78.0661 −0.2120
13 0 3
6 C 52.1018 1.8440 0.2744
13 0 3
7 N 51.2886 0.9219 0.1372
13 0 4
0
13 1 2
7
13 1 4
15
13 1 5
1 −7.23
13 1 5
2 −7.20

2They could be a REGEX expression as in this case. Note the ’.*’ in the middle of the
string.

21.6. fitter 169

13 1 5
3 −6.01
13 1 5
4 −5.91
13 1 5
5 −4.20
13 1 5
[. . .]

The EXTRACTED_DATA file format takes two lines per each kind of
data. The first line indicates:

• the coefficient vector used from EXTERNAL_INPUT,

• the number of calculations from MOPAC_TEMPLATE, and

• the code type.

The second line has the data itself.

Table 21.2: Extracted data

mnemonic code data fields data

HEATFCAL 0 1 Heat of formation in kcal/mol
HEATFJUL 1 1 Heat of formation in kJ/mol
NUMATOMS 2 1 Number of atoms
CARTESIAN 3 5 Sequence number in structure, atom

symbol and x, y, z coordinates
NUMFREQ 4 1 Number of total frequencies
FREQUENCIES 5 2 Sequence number and value in cm−1

CALCPERIND 6 1 Total number of different calculations
per coefficient vector

GRADIENTS 7 1 Gradients, x,y,z components per atom
NUMCONF 8 1 Number of states considered in one-

electron excitations
DIPXYZ 9 4 Components x, y, z of the effect of

dipole operator on states
EEL 10 3 Energies on states

The different types of extracted data are shown in table 21.2 and in the
line 5 of the File 21.7. An example is given in File 21.8. Failed calculations
are not written to the file.

The tool lsexdata can be used to show the contents of the EXTRACTED_DATA
file.

21.6 fitter

fitter reads the EXTRACTED_DATA file to calculate a fit for each coef-
ficient vector using the conditions in the conditions.txt file. The variables
that can be used to calculate the fit are shown in table 21.3. It is written
in fortran and the syntax:

fitter number-of-vectors [extracted-data-file [external-fit-file]]

170 MOPAC module

The optional parameters –extracted-data-file and external-fit-file– de-
faults to the ones shown in the table 21.1 –EXTRACTED_DATA and EX
TERNAL_FIT, respectively.

Table 21.3: Fitter conditions

Condition data
fields data comment

heat 3 calcA value weight Heat of formation of calculus calcA
delta 4 calcA calcB value weight Difference between heat of formation of cal-

culation calcA and calcB. ∆ = (calcA −
calcB) in kcal/mol

frequency 4 calcA N value weight Frequency number N of the calculation calcA
gradient 4 calcA N value weight Gradient number N of the calculation calcA. N

varies from 1 to 3*NUMATOMS.
distance 5 calcA atom1 atom2 value weight Distance between atom1 and atom2 into calcu-

lation calcA
angle 6 calcA atom1 atom2 atom3 value weight Angle between atom1, atom2 and atom3 into

calculation calcA
dihedral 7 calcA atom1 atom2 atom3 atom4 value weight Dihedral angle between atom1, atom2, atom3,

and atom4 into calculation calcA
dipx 4 calcA state value weight Component x of the effect of dipole operator on

state into calculation calcA
dipy 4 calcA state value weight Component y of the effect of dipole operator on

state into calculation calcA
dipz 4 calcA state value weight Component z of the effect of dipole operator on

state into calculation calcA
eel 5 calcA state order value weight State energy into calculation calcA. State: 1 for

singlet, 2 for doublet and 3 for triplet. Order is
the order in the listing (eg. 1 for first singlet,
2 for second singlet and so on). If there are no
data for this state, a penalty is applied.

penalty 1 penalty Fit if any of the MOPAC calculations failed for
a given coefficient vector. If not set, default
value is 1.0e10.

Each line references the calculation index into the MOPAC_TEMPLA
TE file, atom indexes, frequency numbers, etc, a reference value to check
against the calculated one, and a weight.

An example of the conditions.txt file is shown in the File 21.10. The
overall fit per coefficient vector is the sum of relative differences in each
line calculation multiplied by its weight.

fit =


∑

[Referencei −Calculatedi]2 Weighti if calculation is done.

penalty if calculation fails.

Due to the fact that distances, angles and dihedral angles are calcu-
lated from the Cartesian coordinates, the intervening atoms may not be
connected in any other way.

The dihedral angles follow the usual convention, shown in the figure
21.3.

To express a condition, only the four first characters are needed, as
shown in bold in table 21.3.

An example of fitter calculations using the file conditions.txt shown in
File 21.10 is presented in File 21.9, where the type of condition, the cal-
culated value, the reference value, the weight used, and the individual
contributions to the final fit were printed. Default output is none but to
activate it you must set the TOOLS_OUTPUT environmental variable to
yes as shown in File 21.11.

21.6. fitter 171

Figure 21.3: Dihedral angles convention

ϕ

+30◦

ϕ

−30◦

F
ile

21
.9

:fi
tt

er
ca

lc
ul

at
io

ns
ex

am
pl

e
D

EL
TA

ca
lc

=
31

7.
14

20
10

00
00

00
03

re
f=

10
0.

59
99

99
99

99
99

99
w

e=
'

&
0.

10
00

00
00

00
00

00
00

1
co

n
t=

0.
46

33
27

80
74

57
83

86
9

FR
EQ

U
EN

CY
ca

lc
=

18
94

.7
90

00
00

00
00

00
re

f=
32

71
.0

00
00

00
00

00
00

w
e=

'
&

1.
00

00
00

00
00

00
00

00
5E
−

00
4

co
n

t=
1.

77
01

42
91

12
97

88
93

3E
−

00
5

D
IS

TA
N

C
E

ca
lc

=
2.

81
64

27
24

38
67

66
30

re
f=

3.
70

03
09

09
59

99
99

98
w

e=
'

&
10

0.
00

00
00

00
00

00
00

co
n

t=
5.

70
57

45
90

91
16

32
21

in
d

iv
id

u
a

l
97

fi
t=

6.
16

90
91

41
80

03
27

37
D

EL
TA

ca
lc

=
33

47
.9

73
35

00
00

00
02

re
f=

10
0.

59
99

99
99

99
99

99
w

e=
'

&
0.

10
00

00
00

00
00

00
00

1
co

n
t=

10
4.

20
01

83
33

62
66

95
FR

EQ
U

EN
CY

ca
lc

=
45

69
.0

90
00

00
00

00
01

re
f=

32
71

.0
00

00
00

00
00

00
w

e=
'

&
1.

00
00

00
00

00
00

00
00

5E
−

00
4

co
n

t=
1.

57
48

83
81

69
20

90
32

2E
−

00
5

D
IS

TA
N

C
E

ca
lc

=
2.

29
33

69
16

56
59

99
04

re
f=

3.
70

03
09

09
59

99
99

98
w

e=
'

&
10

0.
00

00
00

00
00

00
00

co
n

t=
14

.4
56

89
75

86
93

17
65

in
d

iv
id

u
a

l
98

fi
t=

11
8.

65
70

96
67

20
36

87
D

EL
TA

ca
lc

=
−

8.
40

01
19

99
99

99
99

94
re

f=
10

0.
59

99
99

99
99

99
99

w
e=

'
&

0.
10

00
00

00
00

00
00

00
1

co
n

t=
0.

11
73

97
26

80
81

51
48

9
FR

EQ
U

EN
CY

ca
lc

=
10

86
.3

80
00

00
00

00
01

re
f=

32
71

.0
00

00
00

00
00

00
w

e=
'

&
1.

00
00

00
00

00
00

00
00

5E
−

00
4

co
n

t=
4.

46
05

73
72

94
12

59
23

0E
−

00
5

D
IS

TA
N

C
E

ca
lc

=
3.

81
58

62
53

15
90

99
00

re
f=

3.
70

03
09

09
59

99
99

98
w

e=
'

&
10

0.
00

00
00

00
00

00
00

co
n

t=
9.

75
19

10
75

16
60

21
99

2E
−

00
2

in
d

iv
id

u
a

l
99

fi
t=

0.
21

49
60

98
13

35
41

12
2

D
EL

TA
ca

lc
=

24
21

.2
27

31
00

00
00

02
re

f=
10

0.
59

99
99

99
99

99
99

w
e=

'
&

0.
10

00
00

00
00

00
00

00
1

co
n

t=
53

.2
12

64
37

39
13

41
58

FR
EQ

U
EN

CY
ca

lc
=

13
31

.9
00

00
00

00
00

01
re

f=
32

71
.0

00
00

00
00

00
00

w
e=

'
&

1.
00

00
00

00
00

00
00

00
5E
−

00
4

co
n

t=
3.

51
43

03
98

09
27

60
18

8E
−

00
5

D
IS

TA
N

C
E

ca
lc

=
5.

11
61

29
16

27
55

76
43

re
f=

3.
70

03
09

09
59

99
99

98
w

e=
'

&
10

0.
00

00
00

00
00

00
00

co
n

t=
14

.6
39

96
77

57
02

09
00

in
d

iv
id

u
a

l
10

0
fi

t=
67

.8
52

64
66

39
19

48
73

172 MOPAC module

File 21.10: conditions.txt
del t 1 2 100.6 0.1
frequency 2 15 3271.0 1e−4
distance 3 1 7 3.70 100.0
penalty 1e10

File 21.11: Minimal external-mopac2009.sh with the tools output active
1 # ! / bin / sh
2 export MOPAC_LICENSE=$HOME/ mopac2009
3 export MOPAC_MOP=" mopac_input .mop"
4 export TOOLS_OUTPUT=" yes "
5
6 i n j e c t o r $1
7 i f ["$1 " −ne "0"]
8 then
9 $MOPAC_LICENSE/MOPAC2009. exe $MOPAC_MOP

10 extractor $1
11 f i t t e r $1
12 f i

21.7 Caveats

Some problems may arise when using a long MOPAC input file if the initial
parameters are far from the optimized ones:

• If MOPAC crashes, it can freeze the entire job and you have to kill
the MOPAC process manually. Alternatively, you may use shepherd
to control this. See 22.

• It can be worse: a failed MOPAC calculation can spoil all the previous
calculations in the input file. These failed calculations are the ones
which the fitter assigns a penalty. See 21.6. You must use the injec-
tor default option to calculate one vector at once, or use shepherd
to deal with it.

21.8 MOPAC 2012

MOPAC 2012 output differs a little from that of MOPAC 2009. From our
point of view, the most important change is that some cartesian coordi-
nates printout are missing, so internal coordinates must be used and con-
verted to Cartesian. This job must be done by extractor using quaternion
maths to calculate 3D rotations. The Karney [11] article is a good reference
about this subject.

21.9 MOPAC 2016

There are no significant difference with this interface, but there are some
output to stderr which make the enhanced interface –see Section 22– think
that something is going wrong and kill the process. These are now filtered
by shepherd.

22Shepherd

Computers are good at following
instructions, but not at reading your
mind.

Donald Knuth

shepherd launches and controls the running MOPAC processes. It is
written in C. Also, it can deal with the problems shown in section 21.7. It
can:

• Detect and kill a MOPAC frozen/crashed process.

• Split the job sent by GAFit from one individual once at a time to a
bunch of them.

The default behavior is to send a sole calculation – a MOPAC_T
EMPLATE clone– per MOPAC process. You can change defaults
modifying the source code and compiling it again: Details in section
22.2.

• Run, control and maintain a suitable number –equal or near to the
number of resources available: CPUs, cores or hyperthreads, etc– of
parallel MOPAC processes.

shepherd calculates a good value to this number. It dynamically
changes depending on the node load.

Syntax:

shepherd

The external command to be used is slightly different with shepherd
as shown in File 22.1:

173

174 Shepherd

• To use the special characteristics of shepherd the line 12 is changed
to pass an entire parameters vector (bulk) .

• Also line 15 is changed, where shepherd replaces the entire "$MOPAC_LICENSE/
MOPAC2009.exe $MOPAC_MOP" line. shepherd calls itself the
MOPAC executable as needed.

File 22.1: external-mopac2009.sh with shepherd
1 # ! / bin / sh
2 export MOPAC_LICENSE=$HOME/ mopac2009
3
4 export COEFS_TEMPLATE=" template . coe fs "
5 export MOPAC_TEMPLATE=" template .mop"
6 export MOPAC_MOP=" mopac_input .mop"
7 export EXTERNAL_INPUT="mopac . input "
8 export EXTERNAL_FIT="mopac . f i t "
9 export EXTRACTED_DATA=" extracted . data "

10 export BOUNDS_FILE=" bounds . txt "
11
12 i n j e c t o r $1 bulk
13 i f ["$1 " −ne "0"]
14 then
15 shepherd
16 extractor $1
17 f i t t e r $1 $EXTRACTED_DATA $EXTERNAL_FIT
18 f i

A shorter version of File 22.1 is 22.2 using the default values. shepherd
is totally configured by the environmental variables.

File 22.2: Shorter external-mopac2009.sh with shepherd
1 # ! / bin / sh
2 export MOPAC_LICENSE=$HOME/ mopac2009
3
4 i n j e c t o r $1 bulk
5 i f ["$1 " −ne "0"]
6 then
7 shepherd
8 extractor $1
9 f i t t e r $1

10 f i

File 22.3: Short script for MOPAC 2012
1 # ! / bin / bash
2 export MOPAC_LICENSE=$HOME/ mopac2012
3 export MOPAC_EXECUTABLE=MOPAC2012. exe
4 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH : / l i b / saa / : $MOPAC_LICENSE
5
6 i n j e c t o r $1 bulk
7
8 i f ["$1 " −ne "0"]
9 then

10 shepherd
11 extractor $1
12 f i t t e r $1
13 f i

22.1. Controling freezes 175

22.1 Controling freezes

If a MOPAC 2009 process crashes, it freezes and blocks all the entire job
(see 21.7).

In these cases, glibc will produce output on the process controlling ter-
minal, so the environment variable LIBC_FATAL_STDERR_=1 must be
set to send fatal errors to stderr in order to check it.

shepherd forks itself and execs the MOPAC process in an environ-
ment with the LIBC_FATAL_STDERR_ variable set, and establishing a
pipe with the child process to read MOPAC’s stderr.

If a fatal error is noticed, shepherd kills the child process avoiding the
freeze and creates a fake MOPAC output file suitable for the extractor.

[...]
shepherd #flocks:4
shepherd errno 2 forrtl: severe (174): SIGSEGV, segmentation fault occurred
Image PC Routine Line Source
libc.so.6 B760BEEA Unknown Unknown Unknown
libc.so.6 B7610050 Unknown Unknown Unknown
MOPAC2009.exe 08267594 Unknown Unknown Unknown
MOPAC2009.exe 08089053 Unknown Unknown Unknown
MOPAC2009.exe 0822AA58 Unknown Unknown Unknown
MOPAC2009.exe 081E835E Unknown Unknown Unknown
MOPAC2009.exe 0818392E Unknown Unknown Unknown
MOPAC2009.exe 0804A141 Unknown Unknown Unknown
libc.so.6 B75B1DB6 Unknown Unknown Unknown
MOPAC2009.exe 0804A051 Unknown Unknown Unknown

in file BE-BE.out lost sheep:56
shepherd elapsed time:17.611128
[...]

In the above example, shepherd notices a runtime error, so it kills
the MOPAC 2009 process, creates the fake BE-BE.out file and continues
processing. In the case of MOPAC 2012, the output is the same but with
less detail.

22.2 Operating modes

shepherd takes the file MOPAC_MOP as input to build a MOPAC_MOP.out
file, suitable for the extractor.

It calculates the number of individuals –how many MOPAC_TEMPLATEs
are in the file–, and it can split the input in slices1 from one individual2 to
many, running a MOPAC 2009 process on each slice.

The temporary files for the slices are in the form FIRST-LAST.ext,
where FIRST and LAST are the first and last individuals in the file us-
ing the same naming convention as the coefficient names default option
–see 15.4–, and ext is the extension corresponding to the type of file.

For example:

• BE-BE.mop is the MOPAC 2009 input file corresponding from 56th
to 56th individuals.

• A-E.out is the MOPAC 2009 output file corresponding from 1st to 5th
individuals as a result of calculations on A-E.mop input file.

1Flocks in shepherd parlance
2Sheep

176 Shepherd

The default is to launch a MOPAC 2009 process with an individual –i.e.:
A-A.mop–, an individual per slice3.

The other mode –burst– is disabled but it can be enabled recompiling
the source code changing the line 640 in the main function setting burst
to a value different from zero, File 22.4. burst mode is discouraged. See
21.7.

File 22.4: Shepherd, main function.
637 int
638 main (int argc , char **argv)
639 {
640 int burst = 0;

In this mode, the slice can contain more than one individual and it will be
calculated by one MOPAC 2009 process.

Figure 22.1: Data flow between GAFit and shepherd.

GAFit injector

shepherd

MOPAC
job 1

MOPAC
job 2

MOPAC
job N

extractorfitter

whole generation

w
hole

generation

M
O
PA

C
input

fir
st

M
O
PA

C
in

pu
t

fir
st

M
O
PA

C
ou

tp
ut

second MOPAC input

second MOPAC output
N

th
M

O
PA

C
input

N
th

M
O
PA

C
outputw

ho
le

ge
ne

ra
tio

n

M
O
PA

C
ou

tp
ut

whole generation
MOPAC data

w
h
ol

e
ge

n
-

er
at

io
n

fi
ts

MOPAC template

conditions.txt

bounds.txt

22.3 Parallel processes

Tracking the minimum time elapsed, processing an entire population and
running a fixed number of concurrent MOPAC 2009 processes, yields the
blue line shown in figure 22.2.

There is an optimum number from which a further increase in the num-
ber of parallel processes provides little gain in performance, or no gain at
all. shepherd maintains the number of parallel processes around this
number.

Using the taskset utility, some experiments were performed. Figure
22.3 shows the results in a real four core CPU running repeatedly the
same GAFit task –same seed– selecting from one to four cores.

The same experiment was performed in an eight virtual cpu system.
The host really had only a four core CPU. The results are shown in figure
22.4. Notice that the algorithm behaves as if there were only four core
CPU.

3A sheep per flock

22.3. Parallel processes 177

Optimal

NA

NA + 1

NA − 1

NB

NB + 1

NB − 1

Running processes in parallel

T
im

e
Minimun time

moment A
moment B

Figure 22.2: Shepherd algorithm: minimum time

In figure 22.2, the red and green lines represent two different mo-
ments in the calculations. In both cases, shepherd steps down to find the
first minimum. The minimum found is considered the optimum for this
run –noted as NA and NB–.

shepherd processes entire populations cycling between N , N + 1 and
N − 1 as the number of concurrent processes and it counts the real time
spent. The time recorded changes dynamically, changing N in turn.

The number of times a number of parallel processes are chosen by
shepherd are shown in figures 22.5 and 22.6.

This information can be summarized taking into account the average
N in both cases, as shown in figure 22.7.

The algorithm presents a weakness: if shepherd writes to a local stor-
age, the algorithm works well. However, if it writes to a share, it fails.

Figure 22.8 compares the same job –using the same seed, executed in
a one CPU node– writing to a local storage and to a Network File System
(NFS) share4.

As shown, writing to a local storage stabilizes the minimum time from
one running process –it is a one core CPU–. But writing to a NFS share,
minimum times stabilize over 12 running processes, as if there were 12
core CPUs.

There are a utility, lstimes, to show the current number of parallel
processes, the time spend, the number of times the algorithm choose a
particular number of processes and the maximum and minimun time.

4A typical configuration where the user’s HOME is shared with all cluster nodes.

178 Shepherd

2 4 6 8 10
0

10

20

30

40

1

2

3
4

Running processes in parallel

T
im

e

1 Core
2 Cores
3 Cores
4 Cores

Figure 22.3: Real four core CPU: minimun time vs maximum concurrent
parallel processes per run

Some interesting utilities, like lstimes, created to help with the MOPAC
interface are commented in the Section 23.

You can fix the number of concurrent MOPAC processes setting the
environmental variable SHEPHERD_CORES . Also, if using the simple
configuration, you can use "ncores: number" into job.txt configuration
file.

22.3. Parallel processes 179

2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

Running processes in parallel

T
im

e

1 vcpu
2 vcpu
3 vcpu
4 vcpu
5 vcpu
6 vcpu
7 vcpu
8 vcpu

Figure 22.4: Virtual eight core CPU: minimum time vs maximum concur-
rent parallel processes per run

2 4 6 8 10
0

10

20

30

40

50

60

Running processes in parallel

N

1 Core
2 Cores
3 Cores
4 Cores

Figure 22.5: Real four core CPU: number of times (N) vs parallel processes
per run

180 Shepherd

2 4 6 8 10
0

5

10

15

20

25

30

35

40

Running processes in parallel

N

1 vcpu
2 vcpu
3 vcpu
4 vcpu
5 vcpu
6 vcpu
7 vcpu
8 vcpu

Figure 22.6: Virtual eight core CPU: number of times (N) vs parallel pro-
cesses per run

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

4

Number of cores

A
ve

ra
ge

nu
m

be
r

of
pr

oc
es

se
s

real
virtual

Figure 22.7: Average parallel processes per run. 4 core real CPU vs 8 core
virtual CPU (4 real)

22.3. Parallel processes 181

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1,000

1,200

1,400

1,600

Local

NFS

Running processes in parallel

T
im

e

Minimum time NFS
Minimum time local

Figure 22.8: Behavior in the same one core CPU writing output to a NFS
share vs local storage.

23Mopac module tools

Give a man a fish, and you feed him for a
day. Teach a man to fish, and he’ll invite
himself over for dinner.

Calvin Keegan

23.1 lsexdata

Utility to view the data extracted and saved by extractor in an interme-
diate file.

$ lsexdata
lsexdata v0.1(c)GAFit toolkit - 2014
Usage: lsexdata #individuals [file-data]

lstimes
Used to list statistical information about the processes managed by shep-
herd while running. The asterisk show the optimal point, the arrow the
current number of concurrent processes.

$ lstimes
(c)GAFit toolkit 2014
-- ---- ----------- ----- ----------- -----------
PR slot current t n min max
-- ---- ----------- ----- ----------- -----------
-- 1 103.296173 5 32.095946 177.990252
-- 2 66.666929 19 10.797143 177.528340
-- 3 57.509871 33 14.297250 169.456044

*- 4 56.051490 52 19.642072 164.538096
-> 5 56.279652 51 23.727960 153.558413
-- 6 50.923629 42 25.808633 152.090570
-- 7 57.991970 44 20.538284 148.776540
-- 8 58.542538 26 22.370231 146.897739
-- 9 24.146727 29 20.527292 145.649365
-- 10 56.634926 23 17.946090 145.636910
-- 11 25.284372 34 19.549988 145.340982
-- 12 27.906675 27 18.232288 146.541943
-- 13 20.938043 12 20.345970 146.325395

183

184 Mopac module tools

-- 14 21.070755 9 21.070755 141.851327
-- 15 137.002666 1 137.002666 137.002666
-- 16 0.000000 0 0.000000 0.000000

last:5 total:407 average: 7.02

23.2 mkbounds

Useful to create the bounds file from the coefficients template varying the
values a %percent up and down before run shepherd.

$ mkbounds
mkbounds v0.1 (c)GAFit toolkit - 2014

Create bounds file from coefs.template
Usage: mkbounds %percent

Using the default values, to create a bounds.txt file from template.coefs
with the upper bounds increased 10% and the lower bounds decreased 10%
from the template.coefs values:

$mkbounds 10

File 23.1 is an example using mkbounds taken from the gradient-
example included with the code.

File 23.1: External command with mkbounds
1 # ! / bin / sh
2 export MOPAC_LICENSE=$HOME/MOPAC
3 export MOPAC_EXECUTABLE=MOPAC2012. exe
4 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MOPAC_LICENSE
5 export COEFS_TEMPLATE=" template . coe fs "
6 export MOPAC_TEMPLATE=" template .mop"
7 export MOPAC_MOP=" mopac_input .mop"
8 export EXTERNAL_INPUT="mopac . input "
9 export EXTERNAL_FIT="mopac . f i t "

10 export EXTRACTED_DATA=" extracted . data "
11 export BOUNDS_FILE=" bounds . txt "
12
13 i n j e c t o r $1 bulk
14
15 i f ["$1 " −ne "0"]
16 then
17 shepherd
18 extractor $1
19 f i t t e r $1 $EXTRACTED_DATA $EXTERNAL_FIT
20 else
21 mkbounds 10
22 f i

24AT expressions

One thing that you can’t fake is
chemistry.

Blake Shelton

You can build a input file from a template using @expressions. These
are places where the symbol @ and the following characters are replaced
with the coefficient values obtained by GAFit. The convention is as shown
in Table 24.1.

Table 24.1: @expressions convention

@expression example description

@name(float valueA , float valueB) @bondlenght(1.0,2.1) replace with float values be-
tween valueA and valueB.

@name(float valueC , float valueD/dp) @energy(1.0,2.1/3) replace with float values be-
tween valueC and valueD us-
ing dp decimal places.

@name(integer valueA, integer valueB) @option1(1,5) replace with integer values be-
tween valueA and valueB.

@name(float valueA; float valueB; ...) @angle(0.0;90.0;180.0;270.0) pick one value from the list:
valueA, valueB, ...

There are three types of @expressions:

d float, like @distance(1.0, 2.3) to be replaced by a float from the interval:
[1.0, 2.3]. Note the decimal point and the comma –and the optional
slash for the decimal places–.

i integer, like @index(1, 4) to be replaced by a integer value from the inter-
val: [1, 4]. Note that there is not decimal point but there is a comma.

c choice, like @choosefrom(0; 90; 180.0; 270) to be replaced by one float value
picked up from the set {0, 90, 180, 270}. Note the semi colons.

185

186 AT expressions

An optional format completes the @expressions to resolve the problem
to output fortran-like files with fixed formats:

• @distance(##.###, 1.0, 2.3) to use a format like F6.3.

• @index(#####, 1, 4) to use a format like I5.

• @choosefrom(###.#, 0; 90; 180.0; 270) to use a format like F5.1.

25CHARMM module

Research is what I’m doing when I don’t
know what I’m doing.

Wernher Von Braun

Another feature of GAFit is the possibility to parametrize CHARMM
–at least tested with version c37b1– as the external program.

The details of how GAFit works with an external interface –or external
potential– are the same as explained in Section 21.1 with a final alterna-
tive approach. For clarity, details are printed again with specific modifica-
tions for this case.

25.1 External Interface

The external interface works as follows:

• GAFit generates a whole generation, where each individual is a co-
efficient vector.

• the coefficients are written in the file named in the external input
option of the [job] section.

• the external program specified in the option command is run.

– The external program must read the external input file, and

– for each individual,

* doing its calculations,

* and writing the file named in the external fit option of the
[job].

• GAFit reads the external fit file.

187

188 CHARMM module

• GAFit using the fit, given by the external program, applies the ge-
netic operators to create a new generation.

This implementation uses the bulk option. So, an entire generation is
written to the external input file, and the external command must write
into the external fit file all the individuals fitting values. See Section 25.2.

In all cases, the command is executed passing one argument in the
command line: the number of the individuals that were written to the
external input file.

For example, if the command is chmm.sh, and the job is passing an
entire generation of 100 coefficient vectors, the command line executed by
the shell is:

$ chmm.sh 100

external input examples are given in Files 15.8 and 15.9. external
fit examples are the Files 15.10 and 15.11

Note, as stated before in previous sections that: GAFit only evaluates
if there is a command processor available –i.e. sh– and the coefficients
value. No other checks are performed.

Autoconfigure

Using the option external auto, the external command must configure GAFit.
At the beginning, GAFit executes the external command passing an ar-
gument of "0". If the external command is chmm.sh, the command line
executed by the shell is:

$ chmm.sh 0

With a "0" parameter, the external command must answer with a file
named "response" with the options requested. This file follows the job.txt
format. An example from the CHARMM interface is shown below, File
25.1.

File 25.1: response generated by chmconfigurator

[job]
type : external bulk
c o e f f i c i e n t s : 3
external input : charmm. input
external f i t : charmm. f i t
bounds : bounds . txt

[c o e f f i c i e n t names]
tor1
mult1
phase1

Note that GAFit does not check if there is a response file before the
call. All is ok if it finds one, independently of whether it has been created
by the system call or not.

25.2. Interfacing with CHARMM 189

Stopping an external job
You can stop a running job writing a stop file in the folder where it is
running. The stop file’s name is __STOP__, and the text it contains is
whatever you want.

$ echo ‘‘stop job’’> __STOP__

The launching of the external program follows the guidelines developed
for the MOPAC case, sections 21 and 22. Only the final details and the
tools developed are distinct.

25.2 Interfacing with CHARMM

Interfacing with CHARMM is achieved using three tools, all of them writ-
ten in C: chmconfigurator, chmreference and chmrunner.

The first two are used to configure the system in the first stage, Figure
25.3. The last, chmrunner, create the files needed, runs CHARMM and
calculate the fits, Figure 25.2.

The trick here, is to use the CHARMM capabilities to write a suitable
output to be processed by only one simple binary, chmrunner. We don’t
need here to extract data from complicated output files and process it to
calculate the fit.

chmconfigurator is responsible for:

• answering the GAFit external auto configuration option as an
external bulk type job.

• prepare the calculations analyzing the parameters template (C
HARMM_TEMPLATE) and writing the results to the file temp
late-analysis.

• create the bounds.txt file for GAFit use.

• create the chmfinal-hint file for chmfinal use.

chmreference is in charge of:

• extracting data from the CHARMM geometry files (CHARMM
_GEOMETRIES) to a intermediate file, reference-table, with a
format for easy retrieve by chmrunner.
CHARMM_GEOMETRIES is the folder name where chmref-
erence will search for geometry files, Figure 25.1.
This step could be omitted if the reference-table file exist either
hand made or from previous runs for exactly the same problem
to fit.

chmrunner must:

• create the CHARMM’s input file from the template.

• launch the calculations.

• evaluate the fitting.

190 CHARMM module

example

job.txt
geoms

geo-1.cor
geo-2.cor
geo-3.cor
...

geo-N.cor
...

chmm.sh

Figure 25.1: CHARMM GEOMETRIES folder.

• write the file with the fits to be read by GAFit.

chmfinal is in charge of:

Only one template is used to generate the files needed by CHARMM.

parameters template (CHARMM_TEMPLATE) is used to extract the
parameters values and replace them with the ones obtained by GAFit
and to count and assign names to GAFit coefficients too.

There are places, marked with an @expression, where the symbol
@ and the following characters are replaced with the values obtained
by GAFit. The convention is as shown in Table 25.1.

Table 25.1: @expressions convention

@expression example description

@name(float valueA , float valueB) @bondlenght(1.0,2.1) replace with float values be-
tween valueA and valueB.

@name(float valueC , float valueD/dp) @energy(1.0,2.1/3) replace with float values be-
tween valueC and valueD us-
ing dp decimal places.

@name(integer valueA, integer valueB) @option1(1,5) replace with integer values be-
tween valueA and valueB.

@name(float valueA; float valueB; ...) @angle(0.0;90.0;180.0;270.0) pick one value from the list:
valueA, valueB, ...

See AT expressions, Chapter 24.

The File 25.2 is an example.

File 25.2: CHARMM_TEMPLATE: template.prm with formats
[. . .]
* type alpha−i N−i A−i G−i DA Symb Origin
[. . .]

*−−
1 @alp1 (# .### ,0 .9 ,1 .5) @ni1 (# .### ,2 .2 ,2 .8) '
&@ai1 (# .### ,3 .6 ,4 .0) @gi1 (# .### ,1 .0 ,1 .5) − CR E94
2 1.350 2.490 3.890 1.282 − C=C E94
3 1.100 2.490 3.890 1.282 − C=O E94

[. . .]

25.2. Interfacing with CHARMM 191

F
ig

ur
e

25
.2

:C
H

A
R

M
M

in
te

rf
ac

e:
no

rm
al

op
er

at
io

n

G
A

F
it

ch
m

m
.s

h
N

ch
ru

nn
er

N

ch
ar

m
m

C
H

A
R

M
M

_J
O

B
F

IL
E

bo
un

ds
.t

xt

E
X

T
E

R
N

A
L

_I
N

P
U

T

te
m

pl
at

e-
an

al
ys

is

re
fe

re
nc

e-
ta

bl
e

C
H

A
R

M
M

_T
E

M
P

L
A

T
E

C
H

A
R

M
M

_R
E

F
E

R
E

N
C

E
_G

E
O

M

E
X

T
E

R
N

A
L

_F
IT

C
H

A
R

M
M

_P
A

R
A

M
E

T
E

R
S

C
H

A
R

M
M

_C
A

L
C

U
L

A
T

E
D

_E
N

E
R

G
IE

S

ot
he

r
ch

ar
m

m
fil

es
ne

ed
ed

192 CHARMM module

Figure 25.3: CHARMM: autoconfigure and job preparation

GAFit

chmm.sh 0

chmconfigurator 0
chmreference 0

chmfinal-hint

response

reference-table

bounds.txt

template-analysis CHARMM_GEOMETRIESCHARMM_TEMPLATE

Here, is important to highlight the fact that the bounds file is gener-
ated from the template using the the values from the @expression’s.
Also, the @expression’s names are used to create the [coefficient
names] section in the response file –File 25.1–.

Figures 25.2 and 25.3 show the relations between programs and files:

• Dashed blue lines indicate that a tool uses the file as input.

• red lines indicates that a tool creates the file.

• Black lines indicate calls to execute a tool.

• Files filled in yellow indicate that they must be created or given by
the user.

• Files filled in lime indicate that they are created in the first call
to the external program –chmm.sh in this case– but used without
modification along the rest of the calculations.

25.2. Interfacing with CHARMM 193

F
ile

25
.3

:C
H

A
R

M
M

_T
E

M
P

L
A

T
E

:t
em

pl
at

e.
pr

m
in

ch
ar

m
m

-e
xa

m
pl

e
*>

CH
AR

M
M

22
A

ll
−

H
yd

ro
ge

n
P

ar
am

et
er

F
il

e
fo

r
P

ro
te

in
s

an
d

L
ip

id
s

<<
*>

>>
>>

In
cl

u
d

es
ph

i,
p

si
cr

os
s

te
rm

m
ap

(C
M

AP
)

co
rr

ec
ti

on
<<

<<
<<

<
*>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>
Ju

ly
,

20
03

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
*

A
ll

co
m

m
en

ts
to

AD
M

jr
.

vi
a

th
e

CH
AR

M
M

w
eb

si
te

:
w

w
w

.c
ha

rm
m

.o
rg

*
pa

ra
m

et
er

se
t

d
is

cu
ss

io
n

fo
ru

m
* [.

..
]

C
C

T1
N

H
1

C
0.

20
00

1
18

0.
00

!
AL

LO
W

PE
P

!
a

la
d

ip
ep

ti
d

e
u

pd
at

e
fo

r
ne

w
C

VD
W

R
m

in
,

ad
m

jr
.,

3
/3

/9
3

c
C

C
T2

N
H

1
C

@
to

r1
(0

.,
1

.0
)

@
m

ul
t1

(1
,5

)
@

ph
as

e1
(0

.;
1

8
0

.0
0

)
!

p
a

ra
m

et
ri

za
ti

on
!

a
la

d
ip

ep
ti

d
e

u
pd

at
e

fo
r

ne
w

C
VD

W
R

m
in

,
ad

m
jr

.,
3

/3
/9

3
c

C
N

C
P1

C
0.

80
00

3
0

.0
0

!
AL

LO
W

PR
O

PE
P

!
6−

31
g *

A
cP

ro
N

H
2

,
Pr

oN
H

2
,

6−
31

g *
//

3
−

21
g

A
cP

ro
N

H
C

H
3

RL
D

4
/2

3
/9

3
CA

CA
CA

CA
3.

10
00

2
18

0.
00

!
AL

LO
W

AR
O

!
JE

S
8

/2
5

/8
9

CA
C

PT
C

PT
CA

3.
10

00
2

18
0.

00
!

AL
LO

W
AR

O
!

JW
K

0
5

/1
4

/9
1

fi
t

to
in

d
ol

e
[.

..
]

@
ex

pr
es

si
on

s
he

re

There are environmental variables, shown in Table 25.2, which can be
set to control the file names.

194 CHARMM module

Table 25.2: Environmental variables

Variable Default value Tools

EXTERNAL_INPUT charmm.input GAFit, chmrunner
EXTERNAL_FIT charmm.fit GAFit, chmrunner
BOUNDS_FILE bounds.txt GAFit, chmconfigura-

tor
CHARMM_TEMPLATE template.prm chmconfigurator

CHARMM_PARAMETERS parameters.prm chmrunner
CHARMM_JOBFILE† fitting chmrunner

CHARMM_EXECUTABLE charmm chmrunner
CHARMM_GEOMETRIES geometries chmreference

CHARMM_REFERENCE_GEOM none chmreference, chmrun-
ner

CHARMM_CALCULATED_ENERGIES calculated.energies chmrunner
†the CHARMM_JOBFILE variable is used to generate a CHARMM_JOBFILE.dat
file as input for CHARMM and a CHARMM_JOBFILE.out file for output. The
command executed is:

charmm < CHARMM_JOBFILE.dat > CHARMM_JOBFILE.out

25.3 External command

File 25.4: job.txt in charmm-example
[job]
runs : 1
evaluations : 5000
type : external auto
command: chmm. sh

[print]
print runs : yes

GAFit only calls an external shell script: the name given in job.txt. In
this case: chmm.sh, File 25.4.

There is a complete example in the folder charmm-example which can
be examined in the File 25.5.

File 25.5: External: chmm.sh
1 # ! / bin / sh
2
3 export EXTERNAL_INPUT="charmm. input "
4 export EXTERNAL_FIT="charmm. f i t "
5 export BOUNDS_FILE=" bounds . txt "
6 export CHARMM_TEMPLATE=" template .prm"
7 export CHARMM_PARAMETERS=" parameters .prm"
8
9 export CHARMM_GEOMETRIES="geoms"

10 export CHARMM_REFERENCE_GEOM="GEO−9.COR"
11 export CHARMM_CALCULATED_ENERGIES=" calculated . energies "
12 export CHARMM_JOBFILE=" f i t t i n g "
13 export CHARMM_EXECUTABLE="$HOME/CHARMM/ c37a1dev / exec / gnu /charmm"
14
15
16 i f ["$1 " −ne "0"]
17 then
18 chmrunner $1 1 4

25.4. chmconfigurator 195

19 else
20 chmconfigurator $1
21 chmreference $1
22 f i

A minimal implementation to chmm.sh due to the defaults, could be the
File 25.6.

File 25.6: Minimal external chmm.sh
1 # ! / bin / sh
2 export CHARMM_GEOMETRIES="geoms"
3 export CHARMM_EXECUTABLE="$HOME/CHARMM/ c37a1dev / exec / gnu /charmm"
4
5 i f ["$1 " −ne "0"]
6 then
7 chmrunner $1 1 4
8 else
9 chmconfigurator $1

10 chmreference $1
11 f i

25.4 chmconfigurator

chmconfigurator is a program written in C. The syntax is

chmconfigurator number-of-vectors

When GAFit calls the external command passing a “0” as first param-
eter, the chmconfigurator creates the file response and GAFit uses this
information to configure itself –File 25.1–. This file is deleted the first
time chmrunner runs. Also chmconfigurator creates the bounds.txt
and template-analysis files.

The template-analysis is a summary from the CHARMM_TEMPLATE
file. An example is File 25.7 and the format is shown in Table 25.3.

Table 25.3: template-analysis format

name @expression format type limits string lower limit upper limit

tor1 @tor1 (0. ,1.0) d 0. ,1.0 0. 1.0
mult1 @mult1(1 ,5) i 1,5 1 5

GAFit integer choice value

phase1 @phase1(0.;180.00) c 0.;180.00 1 0.
2 180.00

The choice type is handled by GAFit as integers. So, a set like 0;45;90;180
are translated to a GAFit integer coefficient with bounds between 1 and
4. There are a utility to do automatically the translation: chmfinal. See
Section 25.7.

File 25.7: template-analysis file
tor1|@tor1 (0 . , 1 . 0) ||d|0. ,1.0|0.|1.0|
mult1|@mult1 (1 ,5)|| i |1,5|1|5|
phase1|@phase1 (0 . ; 1 8 0 . 0 0) ||c |0.;180.00|1|2|0. 180.00

196 CHARMM module

The data needed to create the response file is obtained from environ-
mental variables and from the CHARMM_TEMPLATE file1.

chmconfigurator expects a “0” as argument, if not it refuses to work.

25.5 chmreference

chmreference is a program written in C. The syntax is

chmreference number-of-vectors

chmreference creates the file table-reference–File 25.8– extracting data
from geometry files. There are three columns: the geometry file name, the
reference energy and the weight of the energy. Table 25.4 shows the three
first lines from File 25.8.

File 25.8: table-reference file
GEO−1.COR −21.422200 1.000000
GEO−10.COR −30.643500 1.000000
GEO−11.COR −30.151300 1.000000
[. . .]

GEO−48.COR −34.625700 1.000000
GEO−49.COR −34.876600 1.000000
GEO−5.COR −28.488700 1.000000
GEO−6.COR −23.643300 1.000000
GEO−7.COR −18.127800 1.000000
GEO−8.COR −26.037500 1.000000
GEO−9.COR −28.996000 1.000000

Table 25.4: table-reference format

geometries file reference energy weight

GEO-1.COR -21.422200 1.000000
GEO-10.COR -30.643500 1.000000
GEO-11.COR -30.151300 1.000000

· · · · · · · · ·

In order to chmreference works, its is necessary to modify the geom-
etry files to include data for reference energy and weight in the first line
after a colon, as shown in Files 25.9 and 25.10. The first number after the
first colon is interpreted as the energy –21.4222, in the example shown–
and after the second colon as the weight. If there is no second colon and/or
weight present, it is taken as 1.

File 25.9: geo-1.cor file

* 1 : −21.4222
* DATE: 2 / 9/15 17:33:51 CREATED BY USER: user
*

29
1 1 GLY CAY −2.20096 −0.38688 0.68947 GLY3 1 '
&0.00000

1Number and name of the coefficients.

25.6. chmrunner 197

2 1 GLY HY1 −2.03907 −0.96864 −0.24205 GLY3 1 '
&0.00000
3 1 GLY HY2 −2.76856 0.53806 0.45524 GLY3 1 '
&0.00000
[. . .]

File 25.10: geo-1.cor file with weight set
* 1 : −21.4222 : 1.2
* DATE: 2 / 9/15 17:33:51 CREATED BY USER: user
*

29
1 1 GLY CAY −2.20096 −0.38688 0.68947 GLY3 1 '
&0.00000
2 1 GLY HY1 −2.03907 −0.96864 −0.24205 GLY3 1 '
&0.00000
3 1 GLY HY2 −2.76856 0.53806 0.45524 GLY3 1 '
&0.00000
[. . .]

You can set a reference energy using the environment variable CHAR
MM_REFERENCE_GEOM, so the energies are normalized as shown in
File 25.11.

File 25.11: table-reference file normalized with geom-9.cor
GEO−1.COR 7.573800 1.000000
GEO−10.COR −1.647500 1.000000
GEO−11.COR −1.155300 1.000000
[. . .]

GEO−48.COR −5.629700 1.000000
GEO−49.COR −5.880600 1.000000
GEO−5.COR 0.507300 1.000000
GEO−6.COR 5.352700 1.000000
GEO−7.COR 10.868200 1.000000
GEO−8.COR 2.958500 1.000000
GEO−9.COR 0.000000 1.000000

chmreference like chmconfigurator expects a “0” as argument, if
not it refuses to work.

25.6 chmrunner

chmrunner is a program written in C. The syntax is

chmrunner number-of-vectors index-column energy-column

The parameters must be:

number-of-vectors the number of coefficient vectors, which are written
in the file EXTERNAL_INPUT.

index-column the column in the file CHARMM_CALCULATED_ENER
GIES which is the index: A string equal to the first column string in
the file reference-table. We use here the geometry file names. Column
1 in File 25.12.

198 CHARMM module

energy-column the column number in the file CHARMM_CALCULATE
D_ENERGIES corresponding to the calculated energy. Column 4 in
File 25.12.

When it is called, chmrunner:

• loads the EXTERNAL_INPUT file.

• for each vector, chmrunner:

– creates a CHARMM_PARAMETERS file from CHARMM_TEM
PLATE replacing the @expressions by the vector values

– launches a CHARMM job using CHARMM_EXECUTABLE and
CHARMM_JOBFILE as a parameter. Using the example con-
figuration, the system call is like:
$HOME/CHARMM/c37a1dev/exec/gnu/charmm < fitting.dat > fitting.out

The extensions .dat and .out are added by chmrunner. An ex-
ample is the File 25.13.

– examines the results loading the file CHARMM_CALCULATE
D_ENERGIES created by the CHARMM job.

• finally, after processing all the coefficient vectors, writes the EXTER
NAL_FIT file with all the fits.

File 25.12: calculated-energies file example
GEO−1.COR −2.735957E−03 −3.231801E−04 −22.221
GEO−2.COR 0.426072 30.3838 −24.2362
GEO−3.COR 0.36839 60.3622 −27.9524
GEO−4.COR 8.464627E−02 90.0958 −30.0975
GEO−5.COR −0.281997 119.692 −29.2872
GEO−6.COR −0.655632 149.257 −24.4397
GEO−7.COR −6.443053E−03 179.996 −18.9246
GEO−8.COR 30.7522 0.315584 −26.8306
GEO−9.COR 30.6181 30.2866 −29.788
[. . .]

The CHARMM_JOBFILE –File 25.13– must be coded to write the CH
ARMM_CALCULATED_ENERGIES file in each run – File 25.12– with a
column to use as index to check against the table-reference file and the en-
ergy. As shown, other data can be printed too in this file. In this example,
chmrunner reads the first –geometry file name used as index– and the
fourth column –energy value–.

If is set the reference geometry –CHARMM_REFERENCE_GEOM–,
its calculated value is used to normalize the calculated values like as the
reference geometry energy is used to normalize the table-reference file.

The fit is calculated as:

fit =
∑
i

[NormalizedCalculatedEi −NormalizedTableReferenceEi]2.0 ∗ weighti

25.6. chmrunner 199

File 25.13: charmm job example:fitting.dat

* gly3 : f i t t i n g tors iona l terms f i r phi (C−N−CA−C) and psi (N−CA−C=O'
&) dihedrals in las t residue .

* C−N−CA−C
* N−CA−C=O

bomlev −5

open unit 1 card read name top_a l l36_prot_ l ip id . r t f
read RTF card unit 1

open unit 2 card read name parameters .prm
read PARA card unit 2

! read the psf and coordinate f i l e
read psf card name gly3 . psf
! read coor card name gly3 . optc . crd

set CTR 1
set loops ize 49
! Loop for generating conformations around phi and psi
set 1 19
set 2 21
set 3 23
set 4 26
set 5 27

!−−−−loop through the geometries−−−−−

!−−−−−−set up a f i l e to keep track of energies−−−−−−−−
OPEN WRITE CARD UNIT 21 name calculated . energies

LABEL LOOP

! overwrite the coordinates by reading a new set − th is requires '
&bomlev i s set appropriately !

bomlev 0
open unit 29 card read name geoms / geo−@CTR. cor
read coor card unit 29
c lose unit 29

energy ! recompute the energy without res tra ints

quick @1 @2 @3 @4
set psiangle ? phi
quick @2 @3 @4 @5
set phiangle ? phi
set name geo−@CTR. cor

WRITE TITLE UNIT 21 ! write out the current res tra int distance '
&and energy
* @name @psiangle @phiangle ?ENER
*

INCR CTR
IF @CTR LT @loopsize .5 GOTO LOOP

close unit 21

stop

200 CHARMM module

!−−−−−−set up a f i l e to keep track of energies and dihedral angles '
&−−−−−−−−

OPEN WRITE CARD UNIT 21 name energies . dat

! Loop for generating conformations around phi and psi
set 1 19
set 2 21
set 3 23
set 4 26
set 5 27
set delta 60. ! increment for rotat iona l angle
set i 1
set apsi 0 .

labe l looppsi
set aphi 0 .
labe l loopphi

cons dihe bynum @1 @2 @3 @4 force 1000. min @apsi peri 1
cons dihe bynum @2 @3 @4 @5 force 1000. min @aphi peri 1

! Minimization
mini sd nstep 200
mini abnr nstep 1000 nprint 500 to lg 0.01

cons cldh

energy ! recompute the energy without res tra ints

quick @1 @2 @3 @4
set psiangle ? phi
quick @2 @3 @4 @5
set phiangle ? phi

WRITE TITLE UNIT 21 ! write out the current res tra int distance '
&and energy
* @psiangle @phiangle ?ENER
*

! ioform extended
! Optimized geometry
! open write unit 10 card name geo−@i . pdb
! write coor unit 10 pdb

open unit 10 card write name geo−@i . cor
write unit 10 COOR card
* @i : ? ener
*

c lose unit 10

incr i by 1
incr aphi by @delta
i f @aphi . l e . 180. then goto loopphi

incr apsi by @delta
i f @apsi . l e . 180. then goto looppsi

c lose unit 21

stop

chmrunner refuses to work if any of the parameters passed is zero or

25.7. chmfinal 201

a negative number.

25.7 chmfinal

chmfinal is a program written in C. The syntax is

chmfinal

chmfinal analyzes the best.txt file to print the results translating the
GAFit integer coefficients to the corresponding choice values and run once
CHARMM using the best coefficients to compare energies. To do this, the
file chmfinal-hint must be present. This file is created or overwritten by
chmconfigurator.

$ cat best.txt
0.171372950995
1.000000000000
2.000000000000

Fitness: 0.052448000000

$ chmfinal
#
#FINAL EVALUATION
#

COEFFICIENTS

0 ang1: 0.171372950995
1 per: 1.000000000000
2 phase: 180

Fitness: 0.052448000000
#
EVALUATION
#
#
Geometry Reference Calculated Difference
#============== ========== =========== ===========

GEO-1.COR 7.573800 7.577900 -0.0541%
GEO-10.COR -1.647500 -1.647300 0.0121%
GEO-11.COR -1.155300 -1.155100 0.0173%
GEO-12.COR 2.582800 2.583000 -0.0077%
GEO-13.COR 7.320600 7.320800 -0.0027%
GEO-14.COR 4.219200 4.219000 0.0047%
GEO-15.COR -2.859800 -2.870100 -0.3602%
GEO-16.COR -4.086100 -4.096400 -0.2521%
GEO-17.COR -4.005300 -4.015600 -0.2572%
GEO-18.COR -2.446100 -2.456400 -0.4211%
GEO-19.COR 0.128900 0.118500 8.0683%

[...]

26Mvariable module

Beware of bugs in the above code; I have
only proved it correct, not tried it.

Donald Knuth

The mvariable module is a sole C program with all the needed features
to run multivariate fitting using an analytical formula and a file with the
associated data to fit. This module is an application of the FPU code. See
Section 19.

26.1 External interface

The external interface works as shown in Sections 21.1, 21.2, 25.1 and
25.2. This implementation uses the autoconfigure feature (Sections 21.1
and 25.1). See File 26.1.

Stopping an external job
You can stop a running job writing a stop file in the folder where it is
running. The stop file’s name is __STOP__, and the text it contains is
whatever you want.

$ echo ‘‘stop job’’> __STOP__

26.2 Interfacing with mvariable

Figures 26.1 and 26.2 shown the relations between programs and files:

• Dashed blue lines indicate that a tool uses the file as input.

• red lines indicates that a tool creates the file.

203

204 Mvariable module

Figure 26.1: Mvariable: autoconfigure

GAFit

mvariable 0

response

bounds.txt

mvprog.uxe

mvprog.usm

mv-conf-file mv-data-file

job.txt

data file

Figure 26.2: Mvariable: normal operation

GAFit

mvariable N

external.fit

mvprog.uxe

mv-conf-file

mv-data-file

external.input

bounds.txt

• black lines indicate calls to execute a tool.

• Files filled in yellow indicate that they must be created or given by
the user.

• Files filled in lime indicate that they are created in the first call
to mvariable but used without modification along the rest of the
calculations.

26.2. Interfacing with mvariable 205

mvariable uses the job.txt for configuration. Configuration for File
26.1 and data for File 26.2 are borrowed from the Multiple Regression
example, http://simon.cs.vt.edu/SoSci/converted/MRegression/ This is
an example problem for Social Sciences taken from Virginia Tech’s SABLE
[12] where some data are fit to the multiple regression equation:

Predictedsalesperformance = a+ b ∗ Intelligence+ c ∗ Extraversion

File 26.1: mvariable job.txt file
[job]
runs :−−→−−−−−−−→1
evaluations :−−−→5000
type : external auto
command: mvariable

[print]
print runs : yes

[multi variable]
c o e f f i c i e n t s : a (0 .0 ,2000 .0) , b (0 .0 ,100 .0) , c (0 .0 ,100 .0)
f i t variable : f i t

data f i l e : predictedsalesp . txt
data columns : salesperson , in te l l i gence , extroversion , sales
data headers : 2

expression : mv tes t

[mv tes t]
psperform = a + b* i n t e l l i g e n c e +c * extroversion ;

f i t =(psperform−sales) ^2

The job.txt is shared between GAFit and the mvariable program. It
has a new section [multi variable] read by mvariable to configure the
problem to resolve. The configuration parameters are summarized in the
Table 26.1. All of them must be set.

File 26.2: mvariable data file
#salesperson Inte l l i gence Extroversion sales
#
1−−−−−−→89−−−−−→21−−−−−→2625
2−−−−−−→93−−−−−→24−−−−−→2700
3−−−−−−→91−−−−−→21−−−−−→3100
4−−−−−−→122−−−−→23−−−−−→3150
5−−−−−−→115−−−−→27−−−−−→3175
6−−−−−−→100−−−−→18−−−−−→3100
7−−−−−−→98−−−−−→19−−−−−→2700
8−−−−−−→105−−−−→16−−−−−→2475
9−−−−−−→112−−−−→23−−−−−→3625
10−−−−−→109−−−−→28−−−−−→3525
11−−−−−→130−−−−→20−−−−−→3225
12−−−−−→104−−−−→25−−−−−→3450
13−−−−−→104−−−−→20−−−−−→2425
14−−−−−→111−−−−→26−−−−−→3025
15−−−−−→97−−−−−→28−−−−−→3625
16−−−−−→115−−−−→29−−−−−→2750
17−−−−−→113−−−−→25−−−−−→3150

http://simon.cs.vt.edu/SoSci/converted/MRegression/

206 Mvariable module

18−−−−−→88−−−−−→23−−−−−→2600
19−−−−−→108−−−−→19−−−−−→2525
20−−−−−→101−−−−→16−−−−−→2650

Table 26.1: Multi variable section parameters

Parameter Type Comment

coefficients string List of coefficients with their limits. The syntax is the same
as shown in page 185 and in Table 25.1 without the @ symbol
and without the format part.

data file string Name of the data file to fit
data columns string List of column names present into the data file. This names

can be used in the expression.
data headers integer Number of lines to skip into data file

expression string Name of the section where is the expression used to fit data
from data file using the coefficient names, the data file column
names, the fit variable and any intermediate variables.

fit variable string name of the variable into the expression section used as the
calculation result.

Using this information, mvariable configures GAFit and build the
bounds.txt file. For each line from data file the expression section is eval-
uated and the fit variable is obtained. The fit is the sum of all the fit
variables over the whole data file.

An example output running GAFit with the Files 26.1 and 26.2 is
shown below:

+--+
| GAFit 1.3d Build:314 |
| Fri Mar 9 16:20:27 2018 |
+--+

[...]

Mvariable Analysis
============================
external inp: external.input
external fit: external.fit
bounds file : bounds.txt
coefficients: a(0.0,2000.0), b(0.0,100.0) ,c(0.0,100.0)
fit variable: fit
data file : predictedsalesp.txt
columns : salesperson, intelligence, extroversion, sales
headers : 2
expression : mv test
print code : no

psperform = a + b * intelligence + c * extroversion;

fit = (psperform - sales)^2

+--+
| Settings for job |
+--+
| Command:[mvariable] |
| Bounds:[bounds.txt] |
| External input:[external.input] |
| External fit:[external.fit] |
| Total coefficients: 3 |
| Print options: runs yes, ga settings no |
+--+
| run: 1 |
| this run’s seed:1520608828 |
+--+

Eval. Best fit.

100 2.29229e+06

26.3. mvtest 207

200 2.17067e+06
300 1.96761e+06
400 1.93755e+06
500 1.93755e+06
600 1.90796e+06
700 1.901e+06
[...]
4800 1.87477e+06
4900 1.87477e+06
5000 1.87477e+06
5000 1.87477e+06

#
#Results
#
1 a +1010.454994214965
2 b +8.235963226679
3 c +48.923735630054

26.3 mvtest

A command mvtest is provided to test the best.txt –the default coefficient
file parameter– coefficients with the data from data file. The configuration
is taken from the job.txt file.

The syntax is:

$ mvtest -h

mvtest v0.1 (c)GAFit toolkit - 2015
Usage: mvtest [coefficient-file]

Below is a mvtest run using the above results for the best.txt file.
There are 20 points in the data file, each of one is used to calculate the
fit variable –third column– and the sum is the overall fit shown above –
1.874780946116e+06–. A better result is obtained using a higher number
of evaluations.

208 Mvariable module

$ mvtest
point 0: 20633.27276
point 1: 64004.74303
point 2: 99217.54889
point 3: 103.94610
point 4: 12025.52765
point 5: 154400.77546
point 6: 1699.85762
point 7: 29553.01349
point 8: 321534.59538
point 9: 57077.50398
point 10: 29354.08717
point 11: 127051.03437
point 12: 172950.47541
point 13: 31112.05990
point 14: 191076.30652
point 15: 404158.77638
point 16: 296.46434
point 17: 68399.11741
point 18: 88848.19284
point 19: 1283.64736
sum of fits: 1874780.94606

27Generic module

I don’t believe in astrology; I’m a
Sagittarian and we’re skeptical.

Arthur C. Clarke

The generic module is intended to generalize that we have already
learned in the previous modules. Its target is to interface a broad range of
external programs with a litte effort from the user.

Some of the key features are:

• It can parameterize more than one input file at once using many tem-
plates. The coefficients to parameterize could be sparse and repeteated
along the templates.

• It can run a fixed1 number of individual calculations in parallel.

• Each individual calculation could be run in its own folder and deleted
afterwards.

• Fitting data and other interesting information were extracted out
from the run folder by gfitter tool before its deletion.

• The fit compares a list of reference values with a list of calculated val-
ues using any valid implementation. Could be test points or some of
cases or specific problems... The implementation is open but allways
a comparison of two lists of floating point numbers are done.

• The information gathered about the whole calculation is shown in
the file report_best.txt where the best result into each distance slice
–from the current best set of coefficients– are presented.

1No so as the MOPAC module.

209

210 Generic module

27.1 External interface

The external interface works as shown in Sections 21.1, 21.2, 25.1 and 25.2.
This implementation uses the autoconfigure feature, Sections 21.1, 25.1.

Stopping an external job
You can stop a running job writing a stop file in the folder where it is
running. The stop file’s name is __STOP__, and the text it contains is
whatever you want.

$ echo ‘‘stop job’’> __STOP__

27.2 Interfacing with generic

Figure 27.1 –during the autoconfigure phase– and Figure 27.2 –running
the calculations– show the relations between programs and files.

Figure 27.1: Generic module: autoconfigure

GAFit

external-generic.sh 0

templanalyzerresponse

bounds.txt

template-analysis

template 1 template 2

template n

• Dashed blue lines indicate that a tool uses the file as input.

• red lines indicates that a tool creates the file.

• black lines indicate calls to execute a tool.

• violet lines show that GAFit creates the file and intermediately
execute it.

27.3. The example 211

Figure 27.2: Generic module: normal operation

GAFit

best.txt

external-generic N

grunner N
report_best.txt

external.fit

rawall.bin
template-analysis

input 1

input 2

input n

template 1

template 2

template n

user provided script

reference values ExtractedData

external.input

gfitter Id ExtractedData

bounds.txt

rawfits.bin

rawresults.bin

• Files filled in yellow must be created or given by the user.

• Files filled in lime are created in the first call but used without
modification along the rest of the calculations.

The Table 27.1 shows the files used in the above figures.

27.3 The example

This example is included from the distribution in the generic folder into
simple-mode-examples directory. We shall use this example to explain the
generic module’s behaviour.

212 Generic module

Table 27.1: Generic module files. User provided files are in yellow , one

time files created by GAFit in lime .

File Description

job.txt Configuration file. Some of the generated files are
built using this information.

external-generic.sh Automatically generated by GAFit. It glues to-
gether the tools needed to acomplish the task.

templanalyzer It analyses templates and builds a combined
template-analysis file with the results.

grunner It actually runs a bunch of individual jobs –a user
provided script– in parallel. It builds the input
files needed from templates using info from template-
analysis file.

user provided script It runs each individual calculations on input data
and generates output extracting usable information
to ExtractedData file and calls gfitter to evaluate it.

gfitter Using ExtractedData and the reference values it eval-
uates the results and save some interesting data for
statistical accounting.

response A generated file to automatically configure GAFit.
template-analysis It is a generated file by templanalyzer, summa-

rizing the types and diverse information about the
coefficients to take into account.

bounds.txt It is a generated file to establish the bounds for
each variable.

template 1, template 2, . . . ,
template n

Template sources for one individual job input files.

external.input The individual coefficients values generated by
GAFit.

external.fit Evaluation results.
input 1, input 2, . . . , input n Input files to one individual job.
reference values A list of reference values to compare to.
ExtractedData A list of useful data from calculations, ready to be

evaluated against reference values.
report_best.txt Information about the distribution of individuals.
rawall.bin Intermediate results between generations.
rawfits.bin Fits for each individual in machine binary format.

fit = (calculated− reference value)2 ∗ weight

rawresults.bin Evaluation of each individual: test points with their
calculated values in machine binary format.

27.3. The example 213

Job configuration

The example job.txt file is shown in File 27.1 where the specific configura-
tion options from Table 27.2 are used. This is a simple job file with only
one template.

If there is more than one template, the coefficient set names and their
limits are taken from the @expressions and passed to the genetic algo-
rithm.

For example, if we have 3 templates with 2, 5 and 3 @expressions re-
spectively, we have 10 coefficients in each individual from the genetic algo-
rithm. This @expressions generate also the bounds.txt file with the upper
and lower limit of each coefficient and their own type.

More in @expressions: Section 24.
Taking into account this, the Job’s configuration options meanings are:

application Module class. To use this module it must be generic.

ncores Number of individual calculations running in parallel.

executable Shell script or a program –provided by the user– to run for
each individual calculation.

template List of templates. A set of templates generates a set of input
files to the executable program or shell script, so in these input files
this module will accommodate the whole coefficient set as stated from
the @expressions used into them.

reference values List of values to compare with a test input to evaluate
the fit.

Table 27.2: Configuration options to generic module in job.txt file

Option Default value Meaning

ncores 1 Number of parallel jobs. One
per set of coeffcients.

template template One or more templates to pro-
cess separated by white space.

executable
must be set, no de-
fault value

A user provided script to run
per coefficient set (individual).

reference values reference.values Reference data to compare
with.

The parameter population was not specified, so its value is 100 –See
Section 15.1–.

214 Generic module

File 27.1: job.txt, using generic module
[job]
runs :−−→−−−−−−−→1
evaluations :−−−→5000
appl icat ion : generic
ncores : 1
executable : . / gener i cscr ip t . sh
template : template
reference values : reference . values

[print]
print runs : yes

In this file we configure GAFit. You can see it in File 27.1.

The template

The File 27.2 shows the template used in this example where a piece of
the text are represented by @expressions. See Section 24. This expres-
sions will be replaced by GAFit with the coefficient values from genetic
algorithm in any template included in the job.txt file.

File 27.2: template
7
−3
−2
−1
0
1
2
3
5
@a(−10. ,10.0 /3)
@b(−10. ,10.0 /3)
@c(−10. ,10.0 /3)
@d(−10. ,10.0 /3)
@e(−10. ,10.0 /3)

The input file generated from this template shall be read by the pro-
gram testgeneric. testgeneric expects the format of File 27.3. The val-
ues calculated, using the test points as input, will be compared with the
reference values as the reference values are the expected values for those
test points.

File 27.3: input file format
number of points
point 1
point 2
. . .
point n
number of polinomial c o e f f i c i e n t s

c o e f f i c i e n t 1
c o e f f i c i e n t 2
. . .
c o e f f i c i e n t m

test points

coefficient values

27.3. The example 215

We need some well known test points with their expected values –
the reference values– to calculate the fit. The generic module doesn’t
impose where this values must be due the fact that they are not necessary
to calculate the fit. GAFit only needs their expected values –the reference
values– and the values calculated by testgeneric using the test points.

Table 27.3: Test points and their corresponding reference values from the
example.

Reference values file

Test Point name value weight

-3 p1 40 1
-2 p2 0 1
-1 p3 0 1
0 p4 4 1
1 p5 0 1
2 p6 0 1
3 p7 40 1

In this example, we include the test points in the template where they
are read from the test program to obtain the calculated values. Note that
the test points are in the input file generated from the template and their
expected values are in the reference.values file. They must be correlated:
first test point expected value with the first reference value, second test
point with the second reference value, and so on.

Other options are possible upon the type of program to parameterize
behavior.

The reference values

The reference values are the values obtained from the known set of test
points to check the goodness of the model. An example is shown in File
27.4 and the format is in File 27.5.

There are three columns:

• the reference value

• the weight

• the name of the reference

File 27.4: reference.values file
40 1 p1
0 1 p2
0 1 p3
4 1 p4
0 1 p5
0 1 p6
40 1 p7

216 Generic module

File 27.5: reference values file format
value1−→−−−−−−−→weight1−→−−−−−−−→name1
value2−→−−−−−−−→weight2−→−−−−−−−→name2
value4−→−−−−−−−→weight3−→−−−−−−−→name3

. . .−−−→−−−−−−−→ . . .−−−−→−−−−−−−→ . . .
valuen−→−−−−−−−→weightn−→−−−−−−−→namen

The configuration and calculation phases

GAFit calls a script named external-generic.sh –File 27.6– which is au-
tomatically generated by GAFit and is used, for the first time, to configure
itself –Figure 27.1– and for every generation of coefficients –Figure 27.2–
to do the calculations.

File 27.6: external-generic.sh
1 # ! / bin / sh
2 export INPUT_TEMPLATE=" template "
3 export EXTERNAL_INPUT=external . input
4 export EXTERNAL_FIT=external . f i t
5 export N_CORES=4
6 export EXTERNAL_EXECUTABLE= . / gener i cscr ip t . sh
7 export REFERENCE_VALUES=reference . values
8
9 i f ["$1 " −eq "0"]

10 then
11 templanalyzer
12 else
13 grunner $1
14 f i

templanalyzer

This script is called with a "0" as argument on the very first moment run-
ning the templanalyzer program which configures GAFit and it analyzes
the templates creating the files needed for the long run.

The templates go through the environment variable INPUT_TEMPLA
TE as shown in File 27.6 or in the command line arguments. The second
takes precedence.

grunner

After the first run, the script –which is called with an argument distinct
of "0": the number of individuals in the generation– executes the grunner
program which is in the duty to calculate each generation of individuals
–sets of coefficients– generated by GAFit.

grunner prepares, from the templates, the input files replacing each
@expression with the correspondent coefficient for every template and for
every individual.

The input files are in the form "X.template", where "X" is one or more
upper case letters –see 15.4– and "template" is the name of the template
used to create the file.

27.3. The example 217

So, if we have two templates "t0" and "t1", the input files are: A.t0,
A.t1, B.t0, B.t1 . . . AA.t0, AA.t1, . . . and so on. Below you can see some of
the files generated by grunner in the example:

$ ls
A.data AW.data BS.data CO.data R.data
A.output AW.output BS.output CO.output R.output
A.template AW.template BS.template CO.template R.template
AA.data AX.data BT.data CP.data S.data
AA.output AX.output BT.output CP.output S.output
AA.template AX.template BT.template CP.template S.template
[...]

Once the input files are ready, grunner calls for each individual the
user provided script –Table 27.2– passing the input file names –A, B, C,
. . . , AA, AB, . . . – as argument.

The user provided script

The example’s user provided script is shown in File 27.7. The script uses
its argument to access the files produced for each individual executing the
commands needed to accomplish the task and lately the gfitter program
to account the results.

File 27.7: Example’s user provided script: genericscript.sh
1 # ! / bin / sh
2 #echo "−−−−−−−−−−−−−−−− begin $1 −−−−−−−−−−−−−−−−−−"
3 . / t es tgener ic < $1 . template > $1 . output
4 . / extractdata < $1 . output > $1 . data
5 g f i t t e r $1 $1 . data
6 rm $1 . template $1 . output $1 . data
7 #echo "−−−−− end $1 −−−−− "

If the argument is AA, the genricscript.sh executes the commands:

./testgeneric < AA.template > AA.output

./extactdata < AA.output > AA.data
gfitter AA AA.data
rm AA.template AA.output AA.data

The testgeneric program reads the file AA.template created by grun-
ner from the template “template” –File 27.2–, producing the file AA.output.

File 27.8: AA.template file
7
−3
−2
−1
0
1
2
3
5
−4.877000
−3.636000
−2.432000
0.752000
0.833000

218 Generic module

File 27.9: AA.output file
processing input
31.312000
−0.021000
−3.592000
−4.877000
−9.360000
−2.533000
50.104000
done

extractdata –File 27.10– processes this file and produces AA.data strip-
ping out the first and last line. This was unnecessary if testgeneric does
not generate those lines. extractdata is used only to increase the diffi-
culty of a very simple system.

File 27.10: extractdata.c
1 / *
2 (c) GAFit Toolkit $Id : extractdata . c 378 2019−12−04 17:52:09Z

ro $
3 * /
4
5 # i f HAVE_CONFIG_H
6 #include <conf ig . h>
7 #endif
8
9 #include <std io . h>

10 #include <s t d l i b . h>
11
12 #define MAXLINE 200
13
14 char *
15 newLine ()
16 {
17 return malloc (sizeof (char) * MAXLINE) ;
18 }
19
20 int
21 main (void)
22 {
23 int counter = 0;
24 char ** l i s t = NULL;
25 char * l ine = newLine () ;
26
27 while (1)
28 {
29 fge ts (l ine , MAXLINE, stdin) ;
30 i f (f e o f (stdin))
31 break ;
32 counter ++;
33 l i s t = r e a l l o c (l i s t , sizeof (char *) * (counter)) ;
34 l i s t [counter − 1] = l ine ;
35 l ine = newLine () ;
36 }
37 for (int i = 1 ; i < counter − 1; i ++)
38 {
39 pr int f ("%s " , l i s t [i]) ;
40 }
41 }

27.3. The example 219

File 27.11: AA.data file
31.312000
−0.021000
−3.592000
−4.877000
−9.360000
−2.533000
50.104000

The example program: testgeneric

The program used in the example is shown in File 27.12. This program
reads from standard input and writes to standard output.

It calculates a polynomial:

y =

i∑
0

aix
i

File 27.12: testgeneric.c
1 / *
2 (c) GAFit t o o l k i t $Id : testgener ic . c 378 2019−12−04 17:52:09Z ro

$
3 * /
4 # i f HAVE_CONFIG_H
5 #include <conf ig . h>
6 #endif
7
8 #include <std io . h>
9 #include <math . h>

10 #include <s t d l i b . h>
11 #include <str ing . h>
12
13 #define MAXLINE 100
14
15 #define NINT 1
16 #define NDOUBLE 2
17
18 #define OUTPUT_EXT " . output "
19 #define INPUT_EXT " . input "
20
21 union Number
22 {
23 int n ;
24 double d ;
25 } ;
26
27 typedef union Number NUMBER;
28
29 NUMBER
30 getThing (FILE * f , int type)
31 {
32 char l ine [MAXLINE + 1] ;
33 NUMBER number ;
34 number . n = 0;
35 while (fge ts (l ine , MAXLINE, f) != NULL)
36 {

220 Generic module

37 char *p = l ine ;
38 while (*p == ’ ’ || *p == ’\t ’)
39 p++;
40 i f (*p == ’\r ’ || *p == ’\n ’)
41 continue ;
42 switch (type)
43 {
44 case NINT:
45 sscanf (l ine , "%d" , &number . n) ;
46 return number ;
47 case NDOUBLE:
48 sscanf (l ine , "%l f " , &number . d) ;
49 return number ;
50 }
51 break ;
52 }
53 return number ;
54 }
55
56 int
57 getInt (FILE * f)
58 {
59 return getThing (f , NINT) . n ;
60 }
61
62 double
63 getDouble (FILE * f)
64 {
65 return getThing (f , NDOUBLE) . d ;
66 }
67
68 double
69 func (double x , double a [] , int n)
70 {
71 double ret = 0;
72 int i ;
73 for (i = 0 ; i < n ; i ++)
74 {
75 ret += a [i] * pow (x , (double) i) ;
76 }
77 return ret ;
78 }
79
80 int
81 main (int argc , char **argv)
82 {
83 double * coe fs ;
84 double * points ;
85 double * yf ;
86
87 int ncoefs , npoints ;
88
89 FILE * f ;
90
91 f = stdin ;
92 npoints = getInt (f) ;
93 points = (double *) malloc (npoints * sizeof (double)) ;
94 yf = (double *) malloc (npoints * sizeof (double)) ;
95
96 for (int i = 0 ; i < npoints ; i ++)
97 {
98 points [i] = getDouble (f) ;

27.3. The example 221

99 }
100
101 ncoefs = getInt (f) ;
102 coe fs = (double *) malloc (ncoefs * sizeof (double)) ;
103
104 for (int i = 0 ; i < ncoefs ; i ++)
105 {
106 coe fs [i] = getDouble (f) ;
107 }
108
109 f = stdout ;
110 f p r i n t f (f , " processing input\n") ;
111 for (int i = 0 ; i < npoints ; i ++)
112 {
113 yf [i] = func (points [i] , coefs , ncoefs) ;
114 f p r i n t f (f , "%l f \n" , yf [i]) ;
115 }
116 f p r i n t f (f , " done\n") ;
117 }

The testgeneric program:

1. reads from input the number of points to calculate, line 92.

2. reserves memory for the points and the results, lines 93-94.

3. reads the points from input into memory, lines 96-99.

4. reads the number of coefficients from input, line 101.

5. reserves memory for the coefficients, line 102.

6. reads the coefficients from input, lines 104-107.

7. calculates the result and prints it to output, lines 110-116.

The gfitter program

gfitter has two arguments: the input file name and the calculated data
–in this example: AA and AA.data file–.

gfitter calculates the fit as:

fit =

√√√√√√√
n∑
i=1

[
(ReferenceValuesi − calculatedi)2 ∗weighti

]

n is the number of individuals (or coefficient sets)

reference is the reference value, File 27.4

calculated is the calculated value from the coefficient set

weight is the weight of each reference value, File 27.4

222 Generic module

gfitter also works as a probe, extracting data from the actual calcula-
tion. This information is summarized by grunner and written to a dy-
namical report: report_best.txt.

The first argument, the input file name, is to know where to account
the data.

The second argument is a list of the results of the actual calculation
–File 27.9– to compare with the reference values –27.4– line by line.

The report
Every generation calculation, GAFit updates the file report_best.txt with
information about the process.

This file contains in the very first line the best result found till now,
and compares the rest of generation individuals with it.

The module groups the individuals by slices using the distance from the
best, and print the best result found into each slice. Take into account that
these slices are dynamically set as just the best found till now is varying
as time goes by.

For each individual selected –the best in its slice–, the file includes the
distance from best, the coefficients and the calculated reference values.

27.3. The example 223

F
ile

27
.1

3:
re

po
rt

be
st

.t
xt

le
ft

si
de

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+
|

|
co

e
ff

ic
ie

n
ts

(
5

)
|

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

#
|

fi
t

|
d

is
ta

n
ce

|
a

|
b

|
c

|
d

|
e

|
+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+
|

1
|

9.
59

96
5

|
0

|
2.

48
9

|
−

4.
46

|
−

3.
50

1
|

0.
60

5
|

0
.8

4
|

|
2

|
9.

79
51

9
|

0.
32

53
84

|
2.

81
4

|
−

4.
46

3
|

−
3.

49
7

|
0

.6
2

|
0

.8
4

|
|

3
|

10
.1

96
7

|
0.

46
39

23
|

2.
43

1
|

−
4.

92
|

−
3.

49
9

|
0.

62
1

|
0.

84
1

|
|

4
|

9.
98

38
1

|
0.

78
76

71
|

1.
70

3
|

−
4.

50
9

|
−

3.
49

9
|

0
.6

2
|

0
.8

4
|

|
5

|
10

.1
19

6
|

0.
95

06
2

|
3

.4
2

|
−

4.
65

2
|

−
3.

50
3

|
0.

61
2

|
0

.8
4

|
|

6
|

10
.2

89
4

|
1.

27
22

4
|

1.
21

7
|

−
4.

47
9

|
−

3.
49

9
|

0.
62

1
|

0.
84

1
|

|
7

|
11

.9
39

6
|

1.
59

60
2

|
2.

48
2

|
−

2.
86

4
|

−
3.

50
5

|
0.

60
3

|
0.

83
7

|
|

8
|

10
.6

03
|

1.
77

60
2

|
4.

26
5

|
−

4.
45

9
|

−
3.

50
1

|
0.

59
6

|
0.

83
9

|
|

9
|

11
.1

18
4

|
1.

93
42

8
|

4.
42

3
|

−
4.

48
5

|
−

3.
5

|
0.

62
6

|
0.

84
1

|
|

10
|

11
.2

43
9

|
2.

07
20

7
|

4.
56

1
|

−
4.

46
6

|
−

3.
49

9
|

0.
62

1
|

0.
84

1
|

|
11

|
11

.4
90

2
|

2.
32

00
9

|
0.

16
9

|
−

4.
45

|
−

3.
5

|
0.

62
3

|
0.

84
1

|
|

12
|

11
.8

87
9

|
2.

58
74

3
|

−
0.

09
8

|
−

4.
41

9
|

−
3.

50
2

|
0.

62
8

|
0.

84
2

|
|

13
|

12
.2

05
8

|
2.

78
30

4
|

−
0.

29
4

|
−

4.
46

2
|

−
3.

5
|

0
.6

2
|

0
.8

4
|

|
14

|
12

.4
94

3
|

2.
97

92
6

|
5.

46
5

|
−

4.
59

9
|

−
3.

50
1

|
0.

61
5

|
0.

83
8

|
|

15
|

19
.7

32
2

|
3.

33
11

1
|

2.
50

9
|

−
1.

12
9

|
−

3.
50

1
|

0.
62

4
|

0.
84

1
|

|
16

|
12

.7
32

1
|

3.
64

97
6

|
−

0.
96

5
|

−
5.

50
1

|
−

2.
95

7
|

0
.7

1
|

0.
84

2
|

|
17

|
14

.1
15

4
|

3.
81

65
2

|
−

1.
32

2
|

−
4.

66
3

|
−

3.
50

6
|

0.
63

5
|

0.
84

2
|

|
18

|
14

.2
14

2
|

3.
89

53
3

|
6.

37
7

|
−

4.
69

8
|

−
3.

50
3

|
0.

62
5

|
0.

83
8

|
|

19
|

17
4.

08
2

|
4.

30
80

2
|

2.
47

7
|

−
4.

46
3

|
−

3.
50

1
|

4.
91

3
|

0.
84

1
|

|
20

|
13

.8
30

5
|

4.
59

17
3

|
−

2.
07

2
|

−
4.

71
1

|
−

3.
04

|
0.

64
7

|
0.

90
3

|
|

21
|

14
.3

68
3

|
4.

85
89

8
|

−
2.

31
2

|
−

4.
93

8
|

−
2.

93
|

0.
65

2
|

0.
89

8
|

|
22

|
14

.5
02

1
|

5.
17

83
|

−
2.

60
2

|
−

5.
07

4
|

−
2.

79
6

|
0.

75
5

|
0.

84
4

|
|

23
|

14
.6

79
9

|
5.

41
26

5
|

−
2.

81
2

|
−

5.
20

2
|

−
2.

70
9

|
0

.7
4

|
0.

85
3

|
|

24
|

15
.1

06
5

|
5.

69
13

|
−

3.
09

4
|

−
5.

39
9

|
−

2.
93

6
|

0.
74

6
|

0.
85

3
|

|
25

|
14

.7
97

6
|

5.
89

11
2

|
−

3.
39

3
|

−
4.

61
1

|
−

3.
22

2
|

0.
61

9
|

0.
92

1
|

|
26

|
15

.0
74

8
|

6.
21

39
7

|
−

3.
70

6
|

−
4.

64
8

|
−

3.
05

9
|

0.
64

3
|

0.
89

7
|

|
27

|
16

.3
68

3
|

6.
54

94
8

|
−

3.
97

|
−

5.
38

|
−

2.
94

3
|

0.
74

3
|

0.
85

6
|

|
28

|
16

.0
43

6
|

6.
84

09
7

|
−

4.
27

9
|

−
4.

56
6

|
−

2.
51

5
|

0.
69

7
|

0.
80

6
|

|
29

|
15

.6
87

8
|

7.
19

08
2

|
−

4.
52

4
|

−
5.

2
|

−
2.

09
7

|
0.

67
2

|
0.

79
1

|
|

30
|

70
4.

12
4

|
7.

65
97

8
|

−
2.

13
2

|
−

4.
72

2
|

−
3.

50
7

|
0.

66
2

|
6.

94
3

|
|

31
|

56
.4

47
1

|
8.

21
74

6
|

−
5.

20
6

|
−

3.
51

2
|

−
6.

22
3

|
0

.5
3

|
0.

83
5

|
|

32
|

14
.5

72
9

|
9.

15
30

1
|

−
4.

15
4

|
1.

68
4

|
−

2.
26

4
|

0
|

0.
78

4
|

|
33

|
15

.5
94

7
|

10
.0

21
1

|
−

4.
39

6
|

2.
67

4
|

−
2.

23
8

|
−

0.
12

|
0.

77
7

|
|

34
|

19
.8

17
|

11
.8

95
9

|
−

6.
09

4
|

3.
62

9
|

−
2.

18
|

−
0.

20
9

|
0.

76
8

|
|

35
|

18
9.

02
2

|
12

.4
64

3
|

9.
49

4
|

−
5.

61
8

|
6

.0
3

|
3.

44
4

|
−

1.
61

9
|

|
36

|
19

9.
89

9
|

13
.0

85
6

|
9.

70
5

|
−

5.
49

4
|

6.
62

7
|

3.
55

2
|

−
1.

77
4

|
|

37
|

79
0.

6
|

15
.8

07
3

|
9

.9
7

|
2.

34
2

|
5.

66
6

|
−

0.
27

1
|

−
7.

08
7

|
|

38
|

19
4.

6
|

17
.7

06
7

|
−

10
|

6.
83

9
|

−
2.

21
|

−
4.

61
2

|
−

0.
16

|
|

39
|

42
3.

88
1

|
18

.1
28

5
|

−
5.

98
|

9.
27

7
|

1.
16

7
|

−
5.

06
1

|
−

2.
94

4
|

|
40

|
21

6.
02

8
|

19
.9

96
2

|
−

5.
45

|
9.

98
5

|
7.

73
3

|
−

0.
64

7
|

1.
46

6
|

|
41

|
91

3.
84

9
|

22
.8

36
9

|
−

8.
18

2
|

9
.1

9
|

9.
87

4
|

2.
08

7
|

7.
18

4
|

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+

nu
m

be
r

fit
di

st
an

ce
co

ef
fic

ie
nt

s

be
st

224 Generic module

F
ile

27
.1

4:
re

po
rt

be
st

.t
xt

ri
gh

t
si

de
+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+
|

re
fe

re
n

ce
va

lu
es

(
7

)
|

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+
|

p1
|

p2
|

p3
|

p4
|

p5
|

p6
|

p7
|

|
40

|
0

|
0

|
4

|
0

|
0

|
40

|
|

1
|

1
|

1
|

1
|

1
|

1
|

1
|

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+
|

36
.0

65
|

6.
00

5
|

3.
68

3
|

2.
48

9
|

−
4.

02
7

|
−

2.
15

5
|

41
.9

75
|

|
36

.0
3

|
6.

23
2

|
4

|
2.

81
4

|
−

3.
68

6
|

−
1.

7
|

42
.7

32
|

|
37

.0
54

|
6.

76
3

|
4.

07
2

|
2.

43
1

|
−

4.
52

6
|

−
2.

98
1

|
41

.0
68

|
|

35
.0

39
|

5.
20

5
|

2.
93

3
|

1.
70

3
|

−
4.

84
5

|
−

2.
91

1
|

41
.4

65
|

|
37

.3
65

|
7.

25
6

|
4.

79
7

|
3

.4
2

|
−

3.
28

3
|

−
1.

56
|

42
.5

01
|

|
34

.5
17

|
4.

66
7

|
2.

41
7

|
1.

21
7

|
−

5.
29

9
|

−
3.

31
3

|
41

.1
77

|
|

31
.0

45
|

2.
75

8
|

2.
07

5
|

2.
48

2
|

−
2.

44
7

|
0

.9
5

|
46

.4
23

|
|

38
|

7.
83

5
|

5.
46

6
|

4.
26

5
|

−
2.

26
|

−
0.

46
5

|
43

.4
3

|
|

37
.5

97
|

7.
84

1
|

5.
62

3
|

4.
42

3
|

−
2.

09
5

|
−

0.
08

3
|

44
.4

91
|

|
37

.8
22

|
7.

98
5

|
5.

74
8

|
4.

56
1

|
−

1.
94

2
|

0.
05

7
|

44
.5

6
|

|
33

.3
19

|
3.

54
1

|
1.

33
7

|
0.

16
9

|
−

6.
31

7
|

−
4.

29
1

|
40

.2
61

|
|

32
.8

87
|

3
.1

8
|

1.
03

3
|

−
0.

09
8

|
−

6.
54

9
|

−
4.

44
8

|
40

.2
85

|
|

32
.8

92
|

3
.1

1
|

0.
88

8
|

−
0.

29
4

|
−

6.
79

6
|

−
4.

81
8

|
3

9
.6

|
|

39
.0

26
|

9.
14

7
|

6.
78

6
|

5.
46

5
|

−
1.

18
2

|
0.

59
1

|
44

.6
42

|
|

25
.6

6
|

−
0.

77
3

|
0.

35
4

|
2.

50
9

|
−

0.
65

6
|

4.
69

5
|

52
.5

82
|

|
37

.9
57

|
6.

00
1

|
1.

71
1

|
−

0.
96

5
|

−
7.

87
1

|
−

4.
64

3
|

43
.2

91
|

|
32

.1
7

|
2.

37
2

|
0.

04
2

|
−

1.
32

2
|

−
8.

01
4

|
−

6.
12

|
38

.4
82

|
|

39
.9

47
|

10
.1

69
|

7.
78

5
|

6.
37

7
|

−
0.

36
1

|
1.

37
7

|
45

.5
09

|
|

−
80

.1
73

|
−

28
.4

49
|

−
0.

63
3

|
2.

47
7

|
0.

26
7

|
32

.3
07

|
15

8.
35

1
|

|
40

.3
75

|
4.

46
2

|
−

0.
14

5
|

−
2.

07
2

|
−

8.
27

3
|

−
4.

03
|

47
.0

47
|

|
41

.2
66

|
4.

99
6

|
−

0.
05

8
|

−
2.

31
2

|
−

8.
63

|
−

4.
32

4
|

46
.8

46
|

|
35

.4
35

|
3.

82
6

|
−

0.
23

5
|

−
2.

60
2

|
−

8.
87

3
|

−
4.

39
|

45
.7

61
|

|
37

.5
26

|
4.

48
4

|
−

0.
20

6
|

−
2.

81
2

|
−

9.
13

|
−

4.
48

4
|

46
.2

74
|

|
35

.6
3

|
3

.6
4

|
−

0.
52

4
|

−
3.

09
4

|
−

9.
83

|
−

6.
02

|
43

.5
2

|
|

39
.3

3
|

2.
72

5
|

−
1.

70
2

|
−

3.
39

3
|

−
9.

68
6

|
−

5.
81

5
|

45
.0

9
|

|
38

.0
03

|
2.

56
2

|
−

1.
86

3
|

−
3.

70
6

|
−

9.
87

3
|

−
5.

74
2

|
44

.8
37

|
|

34
.9

58
|

2
.7

7
|

−
1.

42
|

−
3.

97
|

−
10

.6
94

|
−

6.
86

2
|

4
2

.8
|

|
33

.2
51

|
2.

11
3

|
−

2.
11

9
|

−
4.

27
9

|
−

9.
85

7
|

−
4.

99
9

|
43

.4
93

|
|

38
.1

3
|

4.
76

8
|

−
1.

30
2

|
−

4.
52

4
|

−
10

.3
58

|
−

5.
28

|
43

.2
18

|
|

52
4.

98
|

99
.0

76
|

5.
36

4
|

−
2.

13
2

|
−

2.
75

6
|

90
.7

8
|

53
2.

39
6

|
|

2.
64

8
|

−
13

.9
54

|
−

7.
61

2
|

−
5.

20
6

|
−

13
.5

76
|

−
19

.5
22

|
10

.1
96

|
|

33
.9

22
|

−
4.

03
4

|
−

7.
31

8
|

−
4.

15
4

|
−

3.
95

|
2.

70
2

|
44

.0
26

|
|

33
.6

17
|

−
5.

30
4

|
−

8.
41

1
|

−
4.

39
6

|
−

3.
30

3
|

3.
47

2
|

43
.1

81
|

|
31

.2
5

|
−

8.
11

2
|

−
10

.9
26

|
−

6.
09

4
|

−
4.

08
6

|
3

.0
6

|
41

.7
38

|
|

−
14

3.
50

9
|

−
8.

60
6

|
16

.0
79

|
9.

49
4

|
11

.7
31

|
24

.0
26

|
8.

75
9

|
|

−
15

3.
76

8
|

−
9.

59
9

|
1

6
.5

|
9.

70
5

|
12

.6
16

|
25

.2
57

|
5.

07
6

|
|

−
51

2.
79

2
|

−
83

.2
74

|
6.

47
8

|
9

.9
7

|
10

.6
2

|
−

78
.2

42
|

−
51

3.
37

4
|

|
61

.1
57

|
1.

81
8

|
−

14
.5

97
|

−
10

|
−

10
.1

43
|

−
44

.6
18

|
−

14
6.

85
7

|
|

−
12

5.
12

5
|

−
26

.4
82

|
−

11
.9

73
|

−
5.

98
|

−
3.

54
1

|
−

70
.3

5
|

−
34

2.
75

7
|

|
17

0.
40

7
|

34
.1

44
|

−
5.

58
9

|
−

5.
45

|
13

.0
87

|
63

.7
32

|
19

5.
37

9
|

|
57

8.
66

9
|

11
1.

18
2

|
−

2.
40

1
|

−
8.

18
2

|
20

.1
53

|
18

1.
33

4
|

74
6.

50
7

|
+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+−
−−
−−
−−
−−
−−
−−
−

+

re
fe

re
nc

es

po
in

ts
va

lu
es

be
st

p1
ca

l-
cu

la
te

d

Appendices

225

ASource code

A.1 Source files

Source files are listed in the table A.1. All files are related to each other.
Same functions and subroutines are called from any compiled executables.
So, a behaviour change in one means a change in the others.

Table A.1: Source files

File/Directory Description Comments

analytical interface between potential
stuff and analytical expres-
sions subsystem

it has dependencies on nullist, pack,
fpu, compiler and bytecodes

aplication.c simple configuration
aplication.h simple configuration
autoweights.c stuff to use automatic weights
autoweights.h autoweights header
bounds.c stuff to read bounds
bounds.h bounds header
bytecodes defines bytecodes for fpu
charmmm interface with charmm
cnames.c coefficient names stuff
cnames.h cnames header
crossover.c crossover code
crossover.h crossover header
compiler compiles expressions into byte-

code
eval.f fortran entry point
evaluation.c evaluation
evaluation.h evaluation header
final.c prints results
final.h final header
finput.c read variables and setup sys-

tem
fitview.c plots data
flyctl rutines to stop running jobs
fpu virtual FPU
ga.c main program

227

228 Source code

File/Directory Description Comments

ga.h ga header
generic generic module stuff
global.h C common variables
inputline subroutines to read files from

C
it heavily depends on the libc function
getdelim

integer.c helper functions to integer co-
efficients

integer.h integer header
inter inter module stuff
interface.f glue to link all together
interface.h interface header
job.txt job configuration modify as per job basis
literals subroutines to support auto-

matic coefficient names
mvariable external interface to deal with

multivariate calculus
mopac MOPAC interface stuff
mutation.c mutation code
mutation.h mutation header
needle analise system structure use it to generate atom2type and

charges files
nullist implements null-terminated

list
pack code and decode bytecode fpu

programs
parameters parameters and settings code
potentials.f potentials stuff modify to introduce new potentials
rand.c random stuff code
rand.h random header
rstrings strings generic functions
selection.c selection code
selection.h selection header
stats.c stats stuff, prints intermediate

results
stats.h stats header
ufpu.c ufpu code
userpotential.f user potential fortran template modify to introduce a fully custom po-

tential
utils.c helper functions
utils.h utils header

A.2 Analytical job

This code deal with expressing potentials as analytical expressions. It de-
pends on A.4. C language.

• analytical.h

• analytical.c

A.3 Application

Simple configuration shortcuts. C language.

• application.h

• application.c

A.4. Fpu routines 229

A.4 Fpu routines

This code implements a virtual calculator: it compiles analytical expres-
sions to packed chunks of bytecode, and run the bytecode in a virtual FPU.
C language.

• bytecodes.h

• bytecodes.c

• nllist.h

• nllist.c

• pack.h

• pack.c

• ucompiler.h

• ucompiler.c

A.5 GAFit

Entry routines and main loop. C language. It depends on A.2. A.7, A.4,
A.7, A.7, A.6 and A.8. See section 14.2 and Figure 1.1.

• ga.h

• ga.c

A.6 Genetic Algorithm Core

GA routines. C language.

Crossover
• crossover.h

• crossover.c

Mutation
• mutation.h

• mutation.c

Selection
• selection.h

• selection.c

230 Source code

Stats
• stats.h

• stats.c

Utils
• utils.h

• utils.c

A.7 MODULES

Here is implemented the interface with external programs. C, Fortran and
Perl languages.

Module inter
Potential base routines like the implemented internal and user-coded po-
tentials. C and Fortran languages.

• eval.f

• final.h

• final.c

• finput.c

• global.h

• interface.h

• interface.f

• potentials.f

• userpotential.f

Flyctl
This code addresses the external job stopping problem.

• flyctl.h

• flyctl.c

A.7. MODULES 231

MOPAC module
Interface with MOPAC.

• extractor

• fitter.f

• injector.c

• mopac.h

• mopac.c

• shepherd.c

• lstimes.c

• lsexdata.f

CHARMM module
Interface with CHARMM.

• chmconfigurator.c

• chmreference.c

• chmrunner.c

• charmm.h

• charmm.c

• chmbest.c

Multivariate module
The fpu routines are used to deal with multivariate calculus.

• mvariable.h

• mvariable.c

Generic module
See Section 27.

• common.h

• common.c

• grunner.c

• gfitter.c

• templanalyzer.c

232 Source code

A.8 Miscellaneous

Arguments
Program arguments stuff. C language.

• arguments.h

• arguments.c

Bounds
Custom routines to read bounds files. C language.

• bounds.h

• bounds.c

Cnames
Coefficient names stuff. C language.

• cnames.h

• cnames.c

Inputline
Custom routines to read lines and text from configuration and data files.
C language.

• line.h

• line.c

Integer
Code to support integer coefficients. C language.

• integer.h

• integer.c

Literals
Routines to support automatic coefficient names. C language.

• literals.h

• literals.c

Parameters
Code to deal with program parameters. C language.

• parameters.h

• paramenters.c

A.9. Tools 233

Rand
Random stuff. C language.

• rand.h

• rand.c

Rangecf
Coefficients with range. C language.

• rangecf.h

• rangecf.c

Rstrings
C strings custom routines. C language.

• rstrings.h

• rstrings.c

A.9 Tools

C, Java and Perl languages.

Fitview
Tool to create some gnuplot plots.

• fitview.c

Needle
Perl tool to create the atom2type file from a geometry file.

• needle

Ufpu
Utility to test analytical expressions as potentials.

• ufpu.c

BLicense

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for soft-
ware and other kinds of works.

The licenses for most software and other practical works are de-
signed to take away your freedom to share and change the works. By
contrast, the GNU General Public License is intended to guarantee
your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software
Foundation, use the GNU General Public License for most of our soft-
ware; it applies also to any other work released this way by its authors.
You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free
programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same freedoms
that you received. You must make sure that they, too, receive or can get

235

236 License

the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two
steps: (1) assert copyright on the software, and (2) offer you this Li-
cense giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly ex-
plains that there is no warranty for this free software. For both users’
and authors’ sake, the GPL requires that modified versions be marked
as changed, so that their problems will not be attributed erroneously
to authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufac-
turer can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic pat-
tern of such abuse occurs in the area of products for individuals to use,
which is precisely where it is most unacceptable. Therefore, we have
designed this version of the GPL to prohibit the practice for those prod-
ucts. If such problems arise substantially in other domains, we stand
ready to extend this provision to those domains in future versions of
the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of soft-
ware on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and mod-
ification follow.

Terms and Conditions

0. Definitions.
“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.
“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and “recip-
ients” may be individuals or organizations.
To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making
of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.
A “covered work” means either the unmodified Program or a work
based on the Program.
To “propagate” a work means to do anything with it that, without per-
mission, would make you directly or secondarily liable for infringe-
ment under applicable copyright law, except executing it on a com-
puter or modifying a private copy. Propagation includes copying, dis-
tribution (with or without modification), making available to the pub-
lic, and in some countries other activities as well.

License 237

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays “Appropriate Legal Notices”
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent
that warranties are provided), that licensees may convey the work
under this License, and how to view a copy of this License. If the
interface presents a list of user commands or options, such as a menu,
a prominent item in the list meets this criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work
for making modifications to it. “Object code” means any non-source
form of a work.
A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which
an implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential com-
ponent (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used
to produce the work, or an object code interpreter used to run it.
The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts
to control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding
Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynam-
ically linked subprograms that the work is specifically designed to
require, such as by intimate data communication or control flow be-
tween those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same
work.

2. Basic Permissions.

238 License

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running
a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide
you with facilities for running those works, provided that you com-
ply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the cov-
ered works for you must do so exclusively on your behalf, under your
direction and control, on terms that prohibit them from making any
copies of your copyrighted material outside their relationship with
you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under arti-
cle 11 of the WIPO copyright treaty adopted on 20 December 1996,
or similar laws prohibiting or restricting circumvention of such mea-
sures.
When you convey a covered work, you waive any legal power to for-
bid circumvention of technological measures to the extent such cir-
cumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work’s users, your or third parties’ legal rights to forbid circum-
vention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and ap-
propriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive
terms added in accord with section 7 apply to the code; keep intact
all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

License 239

You may convey a work based on the Program, or the modifications
to produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modi-
fied it, and giving a relevant date.

b) The work must carry prominent notices stating that it is re-
leased under this License and any conditions added under sec-
tion 7. This requirement modifies the requirement in section 4
to “keep intact all notices”.

c) You must license the entire work, as a whole, under this License
to anyone who comes into possession of a copy. This License will
therefore apply, along with any applicable section 7 additional
terms, to the whole of the work, and all its parts, regardless
of how they are packaged. This License gives no permission to
license the work in any other way, but it does not invalidate such
permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has inter-
active interfaces that do not display Appropriate Legal Notices,
your work need not make them do so.

A compilation of a covered work with other separate and indepen-
dent works, which are not by their nature extensions of the covered
work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the compilation and its resulting copyright
are not used to limit the access or legal rights of the compilation’s
users beyond what the individual works permit. Inclusion of a cov-
ered work in an aggregate does not cause this License to apply to the
other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium cus-
tomarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (in-
cluding a physical distribution medium), accompanied by a writ-
ten offer, valid for at least three years and valid for as long as
you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that
is covered by this License, on a durable physical medium cus-
tomarily used for software interchange, for a price no more than

240 License

your reasonable cost of physically performing this conveying of
source, or (2) access to copy the Corresponding Source from a
network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This alterna-
tive is allowed only occasionally and noncommercially, and only
if you received the object code with such an offer, in accord with
subsection 6b.

d) Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the Cor-
responding Source in the same way through the same place at
no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place
to copy the object code is a network server, the Corresponding
Source may be on a different server (operated by you or a third
party) that supports equivalent copying facilities, provided you
maintain clear directions next to the object code saying where
to find the Corresponding Source. Regardless of what server
hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these require-
ments.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be in-
cluded in conveying the object code work.
A “User Product” is either (1) a “consumer product”, which means
any tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of cover-
age. For a particular product received by a particular user, “normally
used” refers to a typical or common use of that class of product, re-
gardless of the status of the particular user or of the way in which
the particular user actually uses, or expects or is expected to use,
the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer
uses, unless such uses represent the only significant mode of use of
the product.
“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to in-
stall and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.

License 241

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompa-
nied by the Installation Information. But this requirement does not
apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include
a requirement to continue to provide support service, warranty, or up-
dates for a work that has been modified or installed by the recipient,
or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself ma-
terially and adversely affects the operation of the network or violates
the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information pro-
vided, in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions. Ad-
ditional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed
by this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part
of it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright hold-
ers of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

242 License

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that mate-
rial by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose
on those licensors and authors.

All other non-permissive additional terms are considered “further re-
strictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License,
you may add to a covered work material governed by the terms of
that license document, provided that the further restriction does not
survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the additional
terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in
the form of a separately written license, or stated as exceptions; the
above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally, un-
less and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to no-
tify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is rein-
stated permanently if the copyright holder notifies you of the viola-
tion by some reasonable means, this is the first time you have re-
ceived notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

License 243

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not perma-
nently reinstated, you do not qualify to receive new licenses for the
same material under section 10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work oc-
curring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, noth-
ing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically re-
ceives a license from the original licensors, to run, modify and prop-
agate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An “entity transaction” is a transaction transferring control of an or-
ganization, or substantially all assets of one, or subdividing an or-
ganization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that transac-
tion who receives a copy of the work also receives whatever licenses
to the work the party’s predecessor in interest had or could give un-
der the previous paragraph, plus a right to possession of the Corre-
sponding Source of the work from the predecessor in interest, if the
predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (in-
cluding a cross-claim or counterclaim in a lawsuit) alleging that any
patent claim is infringed by making, using, selling, offering for sale,
or importing the Program or any portion of it.

11. Patents.
A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.
A contributor’s “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or here-
after acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a conse-
quence of further modification of the contributor version. For pur-
poses of this definition, “control” includes the right to grant patent

244 License

sublicenses in a manner consistent with the requirements of this Li-
cense.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to make,
use, sell, offer for sale, import and otherwise run, modify and propa-
gate the contents of its contributor version.
In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a
patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To “grant” such a patent license
to a party means to make such an agreement or commitment not to
enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent
license for this particular work, or (3) arrange, in a manner con-
sistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you
have actual knowledge that, but for the patent license, your con-
veying the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more identifiable
patents in that country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrange-
ment, you convey, or propagate by procuring conveyance of, a covered
work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and
works based on it.
A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on the
non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a
party to an arrangement with a third party that is in the business
of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and
under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license
(a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection
with specific products or compilations that contain the covered work,
unless you entered into that arrangement, or that patent license was
granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may oth-

License 245

erwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot con-
vey a covered work so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree
to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have per-
mission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a sin-
gle combined work, and to convey the resulting work. The terms of
this License will continue to apply to the part which is the covered
work, but the special requirements of the GNU Affero General Pub-
lic License, section 13, concerning interaction through a network will
apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new ver-
sions of the GNU General Public License from time to time. Such
new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Pro-
gram specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the op-
tion of following the terms and conditions either of that numbered
version or of any later version published by the Free Software Foun-
dation. If the Program does not specify a version number of the GNU
General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.
Later license versions may give you additional or different permis-
sions. However, no additional obligations are imposed on any author
or copyright holder as a result of your choosing to follow a later ver-
sion.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS

246 License

AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above
cannot be given local legal effect according to their terms, reviewing
courts shall apply local law that most closely approximates an abso-
lute waiver of all civil liability in connection with the Program, un-
less a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

References

[1] Roberto Rodríguez-Fernández, Francisco B. Pereira, Jorge M.C. Mar-
ques, Emilio Martínez-Núñez, and Saulo A. Vázquez. “GAFit: A general-
purpose, user-friendly program for fitting potential energy surfaces”.
In: Computer Physics Communications 217 (2017), pp. 89–98. ISSN:
0010-4655. DOI: https://doi.org/10.1016/j.cpc.2017.02.008. URL:
http://www.sciencedirect.com/science/article/pii/S0010465517300607.

[2] J. M. C. Marques, F. V. Prudente, F. B. Pereira, M. M. Almeida, A. M.
Maniero, and C. E. Fellows. “A new genetic algorithm to be used
in the direct fit of potential energy curves to ab initio and spectro-
scopic data”. In: Journal of Physics B: Atomic, Molecular and Optical
Physics 41.8 (2008), p. 085103. URL: http://stacks . iop.org/0953-
4075/41/i=8/a=085103.

[3] Ira N. Levine. Quantum Chemistry. 7th ed. Pearson Education Inc,
Boston, Feb. 2014, p. 720.

[4] Angels Gonzalez-Lafont, Thanh N Truong, and Donald G Truhlar.
“Direct dynamics calculations with NDDO (neglect of diatomic dif-
ferential overlap) molecular orbital theory with specific reaction pa-
rameters”. In: The Journal of Physical Chemistry 95.12 (1991), pp. 4618–
4627.

[5] Zahra Homayoon, Saulo A. Vázquez, Roberto Rodríguez-Fernández,
and Emilio Martínez-Núñez. “Ab Initio and RRKM Study of the HC-
N/HNC Elimination Channels from Vinyl Cyanide”. In: The Journal
of Physical Chemistry A 115.6 (2011). PMID: 21261315, pp. 979–985.
DOI: 10.1021/jp109843a.

[6] Roberto Rodriguez-Fernandez, Saulo A. Vazquez, and Emilio Martinez-
Nunez. “Collision-induced dissociation mechanisms of [Li(uracil)]+”.
In: Phys. Chem. Chem. Phys. 15 (20 2013), pp. 7628–7637. DOI: 10.
1039/C3CP50564B.

247

https://doi.org/https://doi.org/10.1016/j.cpc.2017.02.008
http://www.sciencedirect.com/science/article/pii/S0010465517300607
http://stacks.iop.org/0953-4075/41/i=8/a=085103
http://stacks.iop.org/0953-4075/41/i=8/a=085103
https://doi.org/10.1021/jp109843a
https://doi.org/10.1039/C3CP50564B
https://doi.org/10.1039/C3CP50564B

248 References

[7] Thomas Weise. Global Optimization Algorithms - Theory and Ap-
plication. en. Second. Online available at http://www.it-weise.de/ Ac-
cessed 1 April 2014. Self-Published, June 2009. URL: http://www.it-
weise.de/.

[8] Kalyanmoy Deb and Ram Bhushan Agrawal. “Simulated binary crossover
for continuous search space”. In: Complex Systems 9 (1994), pp. 1–
34.

[9] Kalyanmoy Deb and Hans-georg Beyer. “Self-Adaptive Genetic Al-
gorithms with Simulated Binary Crossover”. In: Evol. Comput. 9 (2
June 2001), pp. 197–221. ISSN: 1063-6560. DOI: http://dx.doi.org/
10.1162/106365601750190406.

[10] Larry J. Eshelman and J. David Schaffer. “Real-Coded Genetic Algo-
rithms and Interval-Schemata”. In: FOGA. 1992, pp. 187–202.

[11] Charles FF Karney. “Quaternions in molecular modeling”. In: Jour-
nal of Molecular Graphics and Modelling 25.5 (2007), pp. 595–604.

[12] Virginia Tech’s SABLE. Statistics Activity-Based Learning Environ-
ment (SABLE). URL: http://simon.cs.vt.edu/SoSci/converted/.

http://www.it-weise.de/
http://www.it-weise.de/
https://doi.org/http://dx.doi.org/10.1162/106365601750190406
https://doi.org/http://dx.doi.org/10.1162/106365601750190406
http://simon.cs.vt.edu/SoSci/converted/

Other interesting references
to the reader

Marcos M Almeida, Frederico V Prudente, Carlos E Fellows, Jorge MC
Marques, and Francisco B Pereira. “Direct fit of spectroscopic data of
diatomic molecules by using genetic algorithms: II. The ground state of
RbCs”. In: Journal of Physics B: Atomic, Molecular and Optical Physics
44.22 (2011), p. 225102.

M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming:
Theory and Algorithms. Wiley, 2006. ISBN: 9780471787761.

Kent Beck. Una explicación de la programación extrema. Pearson Edu-
cación, 2002, 189 pages. ISBN: 8478290559.

John Calcote. Autotools: A Practioner’s Guide to GNU Autoconf, Automake,
and Libtool. 1st. San Francisco, CA, USA: No Starch Press, 2010.

Bruce Eckel. Piensa en Java. Pearson Educación, 2002, 906 pages. ISBN:
9788420531922.

Brian Foy, Tom Phoenix, and Randal Schwartz. Learning Perl. "O’Reilly
Media, Inc.", 2011, 363 pages. ISBN: 9781449303587.

Daniel Gilly and O’Reilly & Associates. UNIX in a nutshell. O’Reilly &
Associates, 1992. ISBN: 9781565920019.

David Gunter and Jack Tackett. Utilizando Linux. Prentice Hall, 1996,
846 pages. ISBN: 9788489660557.

Francisco Herrera, Manuel Lozano, and Jose L. Verdegay. “Tackling real-
coded genetic algorithms: Operators and tools for behavioural analy-
sis”. In: Artificial intelligence review 12.4 (1998), pp. 265–319.

Jarkko Hietaniemi, John Macdonald, and Jon Orwant. Mastering Algo-
rithms with Perl. O’Reilly Media, Inc., 1999, 684 pages. ISBN: 9781565923980.

A. Holder, ed. Mathematical Programming Glossary. Originally authored
by Harvey J. Greenberg, 1999-2006. Accessed 1 April 2014. http : / /
glossary.computing. society. informs .org: INFORMS Computing So-
ciety, 2006–08.

249

http://glossary.computing.society.informs.org
http://glossary.computing.society.informs.org

250 Other interesting references to the reader

Olaf Kirch. Linux. O’Reilly Media, 1995, 335 pages. ISBN: 9781565920873.
Donald Ervin Knuth. The art of computer programming. Vol. 1,2,3,4A.

Pearson Education, 1968-2011.
Jesse Liberty. C++ para principiantes. Pearson Educación, 2000, 422 pages.

ISBN: 9789701704165.
H. A. Luther, James O. Wilkes, and Brice Carnahan. Cálculo numérico.

Rueda, 1979, 639 pages. ISBN: 8472070131.
Félix García Merayo. Programación en FORTRAN 77. Paraninfo, 1991,

399 pages. ISBN: 9788428318181.
Arnold Neumaier. Introduction to Global Optimization. Accessed 1 April

2014. Self-Published, May 2013. URL: http://www.mat.univie.ac.at/
~neum/glopt/intro.html.

James Newkirk, Jesús García Molina, Robert C. Martin, and Martin Fowler.
La programación extrema en la práctica. Pearson Educación, 2002, 200
pages. ISBN: 8478290575.

Francisco José Baptista Pereira. “Estudo das interacções entre evolução e
aprendizagem em ambientes de computação evolucionária”. PhD the-
sis. 2002. URL: http://hdl.handle.net/10316/1744.

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field
guide to genetic programming. (With contributions by J. R. Koza. Ac-
cessed 1 April 2014.) Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk, 2008. URL: http://www.gp-
field-guide.org.uk.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes 3rd Edition: The Art of Scientific Comput-
ing. Cambridge University Press, 2007. ISBN: 0521880688.

Eric S. Raymond. The Art of UNIX Programming. Pearson Education, 2003.
ISBN: 0131429019.

Herbert Schildt. C. Osborne MacGraw-Hill, 1989, 358 pages. ISBN: 9788476153819.
Fco. Javier Ceballos Sierra. C/C++. RA-MA S.A. Editorial y Publicaciones,

2001, 704 pages. ISBN: 9788478974801.
Kathy Sierra and Bert Bates. Head First Java, 2nd Edition. O’Reilly Me-

dia, 2005. ISBN: 0596009208.
Nick Sofroniou, Apostolos Syropoulos, and Antonis Tsolomitis. Digital Ty-

pography Using LaTeX. Springer, 2003, 510 pages. ISBN: 9780387952178.
James C. Spall. Introduction to Stochastic Search and Optimization. Wiley-

Interscience, 2003, 595 pages. ISBN: 9780471330523.
S. Srinivasan. Advanced Perl programming. A Nutshell handbook. O’Reilly,

1997. ISBN: 9781565922204.
Johan Vromans. Perl 5 pocket reference. O’Reilly Media, 2000, 90 pages.

ISBN: 9780596000325.
Kurt Wall. Programación en Linux con ejemplos. Prentice-Hall, 2000, 541

pages. ISBN: 9789879460092.

http://www.mat.univie.ac.at/~neum/glopt/intro.html
http://www.mat.univie.ac.at/~neum/glopt/intro.html
http://hdl.handle.net/10316/1744
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

Other interesting references to the reader 251

L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly Se-
ries. O’Reilly, 2000. ISBN: 9780596000271.

Stephen Wright and Jorge Nocedal. Numerical Optimization. Springer Ver-
lag, 2006, 664 pages. ISBN: 9780387303031.

List of tables

1.1 Modules with a simple configuration. 15

3.1 Included potentials. 28
3.2 Operators and functions supported 35

4.1 Extracted data . 40
4.2 Fitter conditions . 41

11.1 Example values to fit. 76
11.2 nth set of coefficients fit. 81
11.3 Some results running the example with 6 coefficients. . . . 84

12.1 Files in the mopac-example folder after uncompress the
mopac.tgz file. 88

13.1 Files in the shepherd-example folder. 98

14.1 GA subroutines . 110

15.1 Job file default value parameters 116
15.2 Job file, application modules options 117

17.1 Job file default value for intermolecular module specific pa-
rameters . 127

17.2 Potential values . 131

18.1 Module VGLOBALES variables 134
18.2 Analyltical potential parameters 142
18.3 Operators and functions supported in expressions 144

19.1 Fpu source code . 146
19.2 Fpu instruction set . 148

21.1 Environmental variables . 164
21.2 Extracted data . 169
21.3 Fitter conditions . 170

24.1 @expressions convention . 185

25.1 @expressions convention . 190

253

254 List of tables

25.2 Environmental variables . 194
25.3 template-analysis format . 195
25.4 table-reference format . 196

26.1 Multi variable section parameters 206

27.1 Generic module files. User provided files are in yellow ,

one time files created by GAFit in lime 212
27.2 Configuration options to generic module in job.txt file . . . 213
27.3 Test points and their corresponding reference values from

the example. 215

A.1 Source files . 227

List of figures

1.1 GA main loop . 13
1.2 [Li(Uracil)]+- Xe example. 16

3.1 Intermolecular potential pair example. 23

8.1 Source tree from distribution package, gafit-VERSION.tar.gz 52
8.2 Installed tree into $HOME 53

9.1 Viewing the points with Molden. 56
9.2 Interaction type 1 plot. 66
9.3 General evaluation plot. 67

11.1 Example polynomial plot . 76
11.2 Step 1 : GAFit is launched 79

11.3 Step 2 : GAFit overwrites or creates the external.input file. 80

11.4 Step 3 : GAFit launches the external binary 80

11.5 Step 5 : external using external.input evaluates the ex-
ternal.values and overwrites or creates the external.fit file 81

11.6 Step 5 : GAFit reads the external.fit file 82

11.7 Step 6 : if the fit is the best till now, GAFit overwrites or
creates the best.txt file . 82

11.8 Table 11.3 polynomial plots. 85

12.1 Vinyl cyanide drawn using the coordinates of the first cal-
culation (optimization of the minimum energy structure). . 90

12.2 Three-centered transition state drawn using the coordinates
of the last calculation. 90

14.1 Evolutionary algorithms. 103
14.2 Genes and chromosome example: 4th potential from Table

17.2. 104
14.3 Single gene mutation. 105
14.4 Multiple gene mutation. 105
14.5 Variable lenght insertion. 105
14.6 Variable lenght deletion. 106
14.7 Permutation. 106
14.8 Single point crossover. 107

255

256 List of figures

14.9 Variable lenght single point crossover. 107
14.10 Multiple point crossover. 107
14.11 Variable lenght multiple point crossover. 108
14.12 GA main loop . 111

19.1 uCompiler compiles the expression into fpu machine code. 145
19.2 Fpu load the machine code and process the variables to

obtain V value. 146
19.3 Fpu overview . 147
19.4 Initial status . 149
19.5 apush 0, apush 1, apush 2 150
19.6 neg . 150
19.7 apush 3 . 151
19.8 mult . 151

20.1 Two body interaction example plot. 155

21.1 MOPAC 2009 interface: normal operation 162
21.2 MOPAC 2009 interface: autoconfigure 163
21.3 Dihedral angles convention 171

22.1 Data flow between GAFit and shepherd. 176
22.2 Shepherd algorithm: minimum time 177
22.3 Real four core CPU: minimun time vs maximum concur-

rent parallel processes per run 178
22.4 Virtual eight core CPU: minimum time vs maximum con-

current parallel processes per run 179
22.5 Real four core CPU: number of times (N) vs parallel pro-

cesses per run . 179
22.6 Virtual eight core CPU: number of times (N) vs parallel

processes per run . 180
22.7 Average parallel processes per run. 4 core real CPU vs 8

core virtual CPU (4 real) . 180
22.8 Behavior in the same one core CPU writing output to a

NFS share vs local storage. 181

25.1 CHARMM GEOMETRIES folder. 190
25.2 CHARMM interface: normal operation 191
25.3 CHARMM: autoconfigure and job preparation 192

26.1 Mvariable: autoconfigure . 204
26.2 Mvariable: normal operation 204

27.1 Generic module: autoconfigure 210
27.2 Generic module: normal operation 211

List of files

1 Input file example. 2
2 C source code . 2
1.1 job.txt file example . 14
1.2 Simple configuration job.txt file example 15
2.1 External job simple configuration example 20
2.2 External job automatic configuration example 20
2.3 Response file from the external command 20
3.1 geometries.txt . 24
3.2 energies.txt . 24
3.3 atom2type.txt . 25
3.4 charges.txt . 26
3.5 job.txt . 28
3.6 external-intermolecular.sh 28
3.7 simple configuration job.txt 28
3.8 best.txt . 29
3.9 Analytical expression . 33
3.10 Many analytical expressions 34
4.1 External command to interface with MOPAC 37
4.2 Minimal external command taking into account defaults . 38
4.3 conditions.txt . 40
4.4 Simplified external command to use with shepherd 41
7.1 Intermolecular job.txt file. 47
7.2 Mopac job.txt file. 47
7.3 Charmm job.txt file. 48
7.4 Mvariable job.txt file. 48
7.5 Generic job.txt file. 48
9.1 coord.molden geometries file first lines. 56
9.2 energies.txt file. 56
9.3 atom2type.txt file. 57
9.4 charges.txt file. 58
9.5 bounds.txt file. 58
9.6 job.txt file. 58
9.7 Uracil example output: output.txt (i) 60
9.8 Uracil example output: output.txt (ii) 60
9.9 Uracil example output: output.txt (iii) 62
9.10 Uracil example output: output.txt (iv) 63
9.11 Uracil example output: output.txt (v) 64
9.12 2body-type-1.plt . 65
9.13 Uracil example best.txt . 65

257

258 List of files

9.14 2body-type-1.dat . 66
10.1 Uracil example with an analytical expression 70
10.2 Asembler bytecode produced 72
10.3 Analytical expression job . 73
10.4 Analytical expression job output 73
11.1 external.values file . 75
11.2 bounds.txt file . 75
11.3 External example job.txt: fitting a polynomial 77
11.4 external.c . 77
11.5 external.input file . 83
11.6 external.fit file . 83
11.7 best.txt . 83
11.8 external.output . 84
12.1 External example job.txt: fitting MOPAC coefficients 88
12.2 MOPAC coefficient limits: bounds.txt file 88
12.3 MOPAC 2009 coefficients to fit. template.coefs file 89
12.4 MOPAC 2009 task. template.mop file 89
12.5 Constrains: conditions.txt file 90
12.6 external program: external-mopac.sh file 91
12.7 external auto: response file 92
12.8 mopac.input file . 92
12.9 mopac_input.out file . 93
12.10 extracted.data file . 94
12.11 Output: fitter evaluation . 94
12.12 mopac.fit file . 94
12.13 GAFit output . 95
13.1 external program: external-mopac.sh file 98
13.2 shepherd example output 99
14.1 core.c . 106
15.1 job.txt. Genetic algorithm parameters and job settings for

an intermolecular module job 115
15.2 Reduced job.txt. 116
15.3 Bounds. Variation range of the coefficients 119
15.4 Bounds. All Coefficients=0. Structure 119
15.5 Bounds. All Coefficients<>0. Structure 119
15.6 Bounds file . 120
15.7 External job settings . 120
15.8 External input . 121
15.9 External bulk input . 121
15.10 External fit: one individual fit 121
15.11 External bulk fit: entire generation fit 121
17.1 job.txt. Genetic algorithm parameters and job settings for

an intermolecular module job 127
17.2 Geometries file. Molden xyz coordinates 128
17.3 Energies file. Energies and weights 129
17.4 Energies file. Structure . 129
17.5 Energies file. Structure of Energies file with auto weights 129
17.6 Atom2type. Atom to atom types mapping 130
17.7 Atom2type. Structure . 130
17.8 Charges. Type to charges mapping 130

List of files 259

17.9 Charges. Structure . 131
18.1 potentials.f . 135
18.2 userpotential.f . 139
18.3 job.txt. Analytical expression options 143
19.1 Job.txt to generate the File 19.2 146
19.2 Bytecode source example . 148
21.1 response . 160
21.2 external-mopac2009.sh . 164
21.3 job.txt in mopac-example . 165
21.4 Minimal external-mopac2009.sh 165
21.5 COEFS_TEMPLATE file: template.coefs 166
21.6 MOPAC_TEMPLATE file: template.mop 166
21.7 Extractor first lines . 167
21.8 extracted.data . 168
21.9 fitter calculations example 171
21.10 conditions.txt . 172
21.11 Minimal external-mopac2009.sh with the tools output active172
22.1 external-mopac2009.sh with shepherd 174
22.2 Shorter external-mopac2009.sh with shepherd 174
22.3 Short script for MOPAC 2012 174
22.4 Shepherd, main function. 176
23.1 External command with mkbounds 184
25.1 response generated by chmconfigurator 188
25.2 CHARMM_TEMPLATE: template.prm with formats 190
25.3 CHARMM_TEMPLATE: template.prm in charmm-example 193
25.4 job.txt in charmm-example 194
25.5 External: chmm.sh . 194
25.6 Minimal external chmm.sh 195
25.7 template-analysis file . 195
25.8 table-reference file . 196
25.9 geo-1.cor file . 196
25.10 geo-1.cor file with weight set 197
25.11 table-reference file normalized with geom-9.cor 197
25.12 calculated-energies file example 198
25.13 charmm job example:fitting.dat 199
26.1 mvariable job.txt file . 205
26.2 mvariable data file . 205
27.1 job.txt, using generic module 214
27.2 template . 214
27.3 input file format . 214
27.4 reference.values file . 215
27.5 reference values file format 216
27.6 external-generic.sh . 216
27.7 Example’s user provided script: genericscript.sh 217
27.8 AA.template file . 217
27.9 AA.output file . 218
27.10 extractdata.c . 218
27.11 AA.data file . 219
27.12 testgeneric.c . 219
27.13 report best.txt left side . 223

260 List of files

27.14 report best.txt right side . 224

X

This manual was typeset using the
LATEX typesetting system.

a

TikZTikZ

GAFit

User Manual

]

	Contents
	Conventions
	License and citation
	Simplified User Guide
	Short manual
	GAFit
	Introduction
	Installation
	Configuration
	Simple configuration
	Jobs
	Examples included

	Jobs
	Job configuration

	Intemolecular Module
	An example
	Interactions
	charges
	needle
	Bounds
	Fitting
	Defined potentials
	Final configuration
	Results
	Plotting results
	FORTRAN interface
	Analytical expressions

	MOPAC module
	Enhanced interface with MOPAC

	CHARMM module
	mvariable module
	Simple configuration
	Intermolecular simple configuration
	Mopac simple configuration
	Charmm simple configuration
	Mvariable simple configuration
	Generic simple configuration

	Step by step examples
	The examples
	Xe + liuracil
	Preparing input files
	Running the example
	Examining results

	User designed analytical expressions
	Preparing input files
	Running and examining results

	External Interface
	Input files
	Running the example and examining results

	MOPAC Interface
	Prerequisites
	Input and executable files
	Running the example and examining results

	Enhanced MOPAC Interface
	Input and executable files
	Running the example

	Reference
	Evolutionary Algorithms
	Genetic Algorithms
	The Genetic Algorithm used in GAFit

	Input files
	Section [parameters]
	Section [job]
	Section [print]
	Section [coefficient names]

	Output files
	Other output files

	Intermolecular module: input files
	Section [job]
	Section [print]
	Section [analytical]

	Intermolecular module: Specifiying a new interaction potential
	Modifiying potentials.f and userpotential.f
	Analytical expression

	Intermolecular module: Fpu simulator
	Fpu overview
	Mode of operation

	Intermolecular module: Tools
	needle
	fitview
	ufpu

	MOPAC module
	External potential
	Interfacing with MOPAC 2009
	External command
	injector
	extractor
	fitter
	Caveats
	MOPAC 2012
	MOPAC 2016

	Shepherd
	Controling freezes
	Operating modes
	Parallel processes

	Mopac module tools
	lsexdata
	mkbounds

	AT expressions
	CHARMM module
	External Interface
	Interfacing with CHARMM
	External command
	chmconfigurator
	chmreference
	chmrunner
	chmfinal

	Mvariable module
	External interface
	Interfacing with mvariable
	mvtest

	Generic module
	External interface
	Interfacing with generic
	The example

	Appendices
	Source code
	Source files
	Analytical job
	Application
	Fpu routines
	GAFit
	Genetic Algorithm Core
	MODULES
	Miscellaneous
	Tools

	License
	References
	Other interesting references to the reader
	List of tables
	List of figures
	List of files

