GAFIt

User Nanual

January 4, 2020 Version 1.6

GAFit User Manual

Roberto Rodríguez-Fernández Francisco Baptista Pereira Jorge M. C. Marques Saulo Vázquez-Rodríguez Emilio Martínez-Núñez

> January 4, 2020 Version 1.6 Build 383

Contents

C	ontents	iii
	Conventions	1
	License and citation	5
	Simplified User Guide	7
Ι	Short manual	9
1	GAFit	11
	1.1 Introduction	11
	1.2 Installation	12
	1.3 Configuration	14
	1.4 Simple configuration	15
	1.5 Jobs	16
	1.6 Examples included	16
2	Jobs	19
	2.1 Job configuration	19
3	Intemolecular Module	23
	3.1 An example	23
	3.2 Interactions	24
	3.3 charges	25
	3.4 needle	26
	3.5 Bounds	26
	3.6 Fitting	27
	3.7 Defined potentials	27
	3.8 Final configuration	28
	3.9 Results	29
	3.10 Plotting results	29
	3.11 FORTRAN interface	30
	3.12 Analytical expressions	33
4	MOPAC module	37
-	4.1 Enhanced interface with MOPAC	41
5	CHARMM module	43

6	mvariable module	45
7	Simple configuration	47
	7.1 Intermolecular simple configuration	47
	7.2 Mopac simple configuration	47
	7.3 Charmm simple configuration	48
	7.4 Mvariable simple configuration	48
	7.5 Generic simple configuration	48
II	Step by step examples	49
8	The examples	51
9	Xe + [Li(Uracil)] ⁺	55
	9.1 Preparing input files	55
	9.2 Running the example	59
	9.3 Examining results	64
10	User designed analytical expressions	69
	10.1 Preparing input files	70
	10.2 Running and examining results	73
11	External Interface	75
	11.1 Input files	75
	11.2 Running the example and examining results	79
12	MOPAC Interface	87
	12.1 Prerequisites	87
	12.2 Input and executable files	87
	12.3 Running the example and examining results	91
13	Enhanced MOPAC Interface	97
	13.1 Input and executable files	97
	13.2 Running the example	98
II	IReference	101
14	Evolutionary Algorithms	103
- 1	14.1 Genetic Algorithms	105
	14.2 The Genetic Algorithm used in GAFit	104
. –		
15	Input files	115
	15.1 Section [parameters]	117
	15.2 Section [job]	118
	15.3 Section [print]15.4 Section [coefficient names]	$\frac{122}{122}$
	15.4 Section [coefficient names]	122
16	Output files	123
	16.1 Other output files	125

Contents

17	Intermolecular module: input files	127
	17.1 Section [job]	128
	17.2 Section [print]	132
	17.3 Section [analytical]	132
18	Intermolecular module: Specifying a new interaction po-	
	tential	133
	18.1 Modifiying potentials.f and userpotential.f	133
	18.2 Analytical expression	141
	v i	
19	Intermolecular module: Fpu simulator	145
	19.1 Fpu overview	145
	19.2 Mode of operation	146
_		
20	Intermolecular module: Tools	153
	20.1 needle	153
	20.2 fitview	154
	20.3 ufpu	156
01	MOPAC module	159
41	21.1 External potential	159 159
	21.2 Interfacing with MOPAC 2009	161
	21.3 External command	164
	21.4 injector	164
	21.5 extractor	167
	21.6 fitter	169
	21.7 Caveats	172
	21.8 MOPAC 2012	172
	21.9 MOPAC 2016	172
22	Shepherd	173
	22.1 Controling freezes	175
	22.2 Operating modes	$175 \\ 175$
	22.2 Operating modes	175
	22.3 Parallel processes	170
23	Mopac module tools	183
	23.1 lsexdata	183
	23.2 mkbounds	184
		105
24	AT expressions	185
25	CHARMM module	187
	25.1 External Interface	187
	25.2 Interfacing with CHARMM	189
	25.3 External command	194
	25.4 chmconfigurator	195
	25.5 chmreference	196
	25.6 chmrunner	197
	25.7 chmfinal	201
	20., omminiai	<u> </u>
26	Mvariable module	203

26.2 Interfacing with mvariable	203 203 207
27.1 External interface	209 210 210
	211 2 27
A.1 Source files A.2 Analytical job A.3 Application A.4 Fpu routines A.5 GAFit A.6 Genetic Algorithm Core A.7 MODULES A.8 Miscellaneous	227 228 228 229 229 229 230 232 233
B License	235
References	247
Other interesting references to the reader	249
List of tables	253
List of figures	255
List of files	257

Conventions

Symbols

- \longrightarrow tabs
- $_$ blank spaces
- \dots or [...] more output not shown
- > wrapped line
- $\boldsymbol{\varsigma}$ wrapped line continuation

Acronyms

AM1	Austin Model 1
BLX- α	Blend Alpha Crossover 112
CHARMM	$Chemistry \ at \ HARvard \ Macromolecular \ Mechanics \ldots \ldots 12$
CPU	Central Processing Unit 11
DNA	deoxyribonucleic acid104
DPC	Double Point Crossover (or TPX, Two Point Crossover)106
FPU	Floating Point Unit
GA	$Genetic Algorithm \dots 12$
MOPAC	Molecular Orbital PACkage12
MPX	Multiple Point Crossover 106
NFS	Network File System 177
PES	Potential Energy Surface11
SBX	Simulated Binary Crossover112
SPC	Single Point Crossover (or SPX)106
VC	vinyl cyanide

Input, output and files

• A command line interactive shell session:

```
tar -xvzf gafit-VERSION.tar.gz
cd gafit-VERSION
./configure
make
make install
```

• A program output to interactive terminal or redirected to a file:

```
[..]
MODULE INTERMOLECULAR
------
Coordinates:[coord.molden]
Energies:[energies.txt]
Atom2type:[atom2type.txt]
Bounds:[bounds.txt]
Charges:[charges.txt]
Potential read: 1
All coefficients: no, Read and repeat subset
Interactions types: inter
Fitting: relative
[...]
```

• An input or output file:

```
File 1: Input file example.
```

[job] coefficients:__5

• Source code file:

File 2: C source code

34	int 1;	
35		
36	<pre>//to print stats every evaluations/1000</pre>	
37	<pre>int last_evals;</pre>	
38	int outputeach = 0;	
39		
40	<pre>if (jo->evaluations < STATS_MAX_LINES / 10)</pre>	//100
41	outputeach = 1;	

• Command line tool syntax:

```
command [-a][-b c] [-d [e]] [-f {g|h|i}] mandatory-argument [optional-argument]
```

options or flags consist of '-' characters and single letters or digits, such as '-a' or '-1' which enable a feature. Some of them have an option argument too, like the '-b c', where 'c' is the argument for option '-b'. Here 'c' is used to 'tune' the 'feature' enabled with '-b'.

Arguments or option-arguments enclosed in the '[' and ']' notation are optional and can be omitted like the '[optional-argument]' or '[e]' or '[-d [e]]'. The ones not enclosed like 'mandatory-argument' must be set.

If the '-b' feature is enabled 'c' must be set, but if the '-d' feature is enabled, 'e' is optional.

'{' and '}' notation represents a set of options to select. Arguments separated by the 'I' bar notation are mutually-exclusive, and only one of them must be chosen from the set enclosed with '{' and '}'.

License and citation

License

GAFit. A computer toolkit for parametrization of potential energy surfaces.

Copyright © 2014 Roberto Rodríguez-Fernández, Francisco Baptista Pereira, Jorge M. C. Marques, Saulo Vázquez-Rodríguez and Emilio Martínez-Núñez.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITH-OUT ANY WARRANTY; without even the implied warranty of MERCHAN-TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see Appendix B.

Citation

The main features of **GAFit** are described the following papers:

- Roberto Rodríguez-Fernández, Francisco B. Pereira, Jorge M.C. Marques, Emilio Martínez-Núñez, and Saulo A. Vázquez. "GAFit: A general-purpose, user-friendly program for fitting potential energy surfaces". In: *Computer Physics Communications* 217 (2017), pp. 89–98. ISSN: 0010-4655. DOI: https://doi.org/10.1016/j.cpc.2017.02.008. URL: http://www.sciencedirect.com/science/article/pii/S0010465517300607
- 2. J. M. C. Marques, F. V. Prudente, F. B. Pereira, M. M. Almeida, A. M. Maniero, and C. E. Fellows. "A new genetic algorithm to

be used in the direct fit of potential energy curves to ab initio and spectroscopic data". In: *Journal of Physics B: Atomic, Molecular and Optical Physics* 41.8 (2008), p. 085103. URL: http://stacks.iop.org/0953-4075/41/i=8/a=085103

Please, cite these articles in every scientific work that reports results obtained with GAFit.

Simplified User Guide

This manual is accompanied by a concise guide:

SimplifiedUserGuide.pdf.

It's recommended to read it before this manual. It's focused in simple and practical examples of use: Fitting pairwise intermolecular potentials, interfacing with the CHARMM program, interfacing with the MOPAC program and fitting a user-defined function to data.

Part I Short manual

GAFit

1.1 Introduction

To invent, you need a good imagination and a pile of junk.

Thomas A. Edison

One of the key concepts in chemistry is that of Potential Energy Surface (PES)^[3]. It comes from the Born-Oppenheimer approximation, which facilitates the solution of the time-independent Schrödinger equation for molecular systems. Fortunately, the errors associated with this approximation are negligible for many of the systems and conditions of interest to chemists. The potential energy surface of a molecular system governs many of its chemical properties, and particularly, the dynamics, that is, the spatial evolution of nuclei with time. Most of the chemical dynamics simulations performed nowadays involve integration of the classical equations of motion, calculating the forces on atoms at each step either directly by electronic structure calculations (i.e., "on-the-fly" or direct dynamics) or from analytical PESs. In principle, the direct dynamics approach may be the preferred option for simulations of reactive systems that include a small number of atoms, because one avoids the construction of the analytical surface. The use of analytical PESs, however, has a clear advantage in terms of Central Processing Unit (CPU)-time costs, being mandatory in molecular dynamics simulations of systems composed of thousands of atoms¹. Even for small-size systems, the use of an analytical surface may be a convenient choice. If it is developed with care, it may be almost as accurate as the exact surface corresponding to the electronic structure method used as a reference for its construction.

 $^{^1 {\}rm In}$ molecular mechanics and molecular dynamics, the analytical potential energy surface of a system is generally known as the force field.

The development of analytical PESs or force fields may be facilitated by using optimization methods, and many research groups have been using them for their particular purposes. However, to our knowledge, there is not a general code that allows users to parametrize analytical surfaces or force fields in a relatively easy way. The aim of the present work was to write a suite of programs to assist users in developing analytical surfaces. This suite of programs will be called **GAFit**. We used this name because, with this computational tool kit, a Genetic Algorithm (GA) conducts the fitting -Fit- or parametrization of a desired potential energy surface. The genetic algorithm was not developed in this work; rather it was taken from the literature^[2]. For our purposes, the advantages of a genetic algorithm against other type of optimization methods are detailed later on. In this work, the **GAFit** program is applied to the development of intermolecular potentials for the interaction between two fragments-e.g. molecules-, and to the reparametrization of a semiempirical Hamiltonian². However, it can be easily adjusted for other purposes in which fittings of a series of parameters are needed. The core of the package is the genetic algorithm developed by Marques, Prudente, Pereira, Almeida, Maniero, and Fellows [2] and co-workers.

The functionality of the package was extended separating the core itself from the fitting targets –See Figure 1.1–. Now, users can choose, upon their programming skills, from introducing their custom potentials directly into code, use an easy pre-coded potential template to do so, or for those with no programming knowledge at all, use an *analytical expression* or the most used potentials coded just ready to use *—internal job type—*. A complete set of tools were added to the package to facilitate the creation and configuration of input files.

In addition, a external interface *—external job type—* was developed to interact with external programs.

Using this interface were developed the tools needed to use **GAFit** to parametrize the Molecular Orbital PACkage (MOPAC) and Chemistry at HARvard Macromolecular Mechanics (CHARMM), among others.

1.2 Installation

The configuration, compilation and installation phases are done by the *GNU autotools* utilities.

```
tar -xvzf gafit-VERSION.tar.gz
cd gafit-VERSION
./configure
make
make install
```

The binaries go into \$HOME/bin and other files into \$HOME/share. To install into /usr/local (note that you need *superuser* permissions.), use:

²Semiempirical Hamiltonians supplemented with specific reaction parameters were first proposed by Truhlar^[4] as a practical method for direct dynamics calculations.

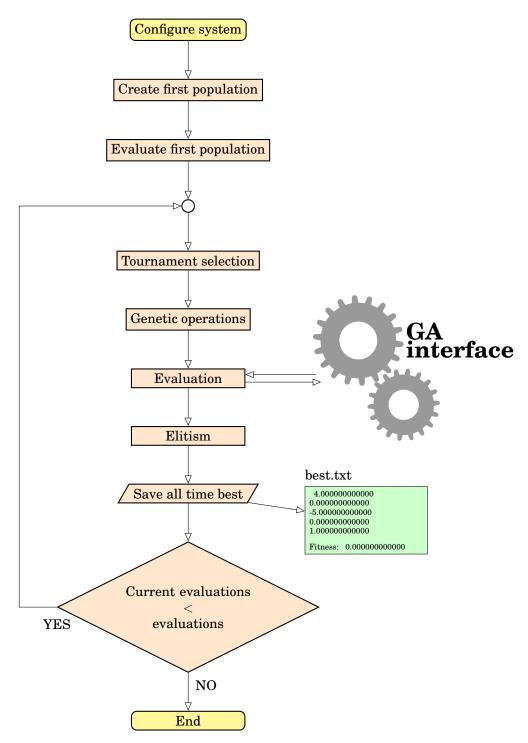


Figure 1.1: GA main loop

```
./configure --prefix=/usr/local
make
```

```
sudo make install
```

To force a fortran compiler (e.g. *ifort*) use:

./configure FC=ifort

To force a C compiler (e.g. *icc*) use:

./configure CC=icc

Or any combination above:

./configure --prefix=/usr/local FC=ifort CC=icc

To compile with debug options:

./configure --enable-debug

In addition, the usual targets of *Autotools* apply (i.e. *make distcheck, make clean* etc).

1.3 Configuration

GAFit uses only one configuration file: *job.txt*, divided into logic [**sections**]. Each [**section**] have key/value pairs and all have default values.

[job]	
runs: 1	
type: external a	uto
	ll-intermolecular.sh
evaluations: 50	
Geometries: m	
	nergies.dat
	om2types.txt
	unds.txt
Charges: ch	
Potential: 1	arges.txt
All coefficients	
fitting: re	
iitting. ie	Iative
[parameters]	
population :	50
crossover rate:	
blx_alpha:	0.5
mutation rate:	
elitism:	ves
tournament size:	
crossover:	sbx
mutation:	sigma
sigma :	0.1
direction :	min
[print]	
geometries: yes	
runs: yes	

File 1.1: job.txt file exam	ple
-----------------------------	-----

- The [sections] could be skipped if default values are used.
- Only options applicable to the actual job are processed.
- Options or sections erroneous are omitted.
- Section and options names are case insensitive.

There are three main [sections]:

Parameters: Genetic algorithm settings. It is safe to skip this section: default values are good.

Job: Job definition and its options.

Print: Output options.

1.4 Simple configuration

Some of the applications presented here have default values except for a few group of parameteres which must be given from users. A simple configuration method has been developed using a few key directives in the configuration file *job.txt*, as shown in the example File 1.2.

File 1.2: Simple configuration job.txt file example

Evaluations: 100000
Application: MOPAC
Exec: /usr/programs/mopac/MOPAC2016.exe

The application modules with an alternative *simple configuration* are sumarized in table 1.1.

application	notes
intermolecular	Intermolecular potential energy fit.
mopac	Fitting the properties of a molecular system using
charmm	MOPAC. Fitting the properties of a molecular system using CHARMM.
mvariable	multivariable fitting.
generic	Generic module to interface external programs.

Table 1.1: Modules with a simple configuration.

The keyword **application** in File 1.2 shown that the *simple configuration module* in use is **mopac**.

1.5 Jobs

This changed from **version 1.3** onwards.

An external program evaluates the individuals generated by **GAFit** like **MOPAC** or **CHARMM**. The external program behavior is the target of the fit.

The **type** option value must be set in section **[job]** to select how to communicate with the external program or the intermediate programs between **GAFit** and the target program.

external : One individual is passed in each external program run.

external bulk : The whole generation passed per external program run.

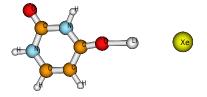
external auto : The external program knows the **GAFit**'s protocol and can configure it as needed.

1.6 Examples included

There are several folders in the package with examples divided in two categories:

Simple configuration method This examples, from the *Simplefied User Guide*, are in the folder **simple-mode-examples** and follow Section 1.4.

- charmm
- intermolecular
- mopac
- mvariable
- generic


Detailed configuration This examples are in the folder **advanced-mode-examples**.

• Forcefield

charmm Charmm example.

- Intermolecular
 - **uracil** Here the interaction between Xe and the [Li(Uracil)]⁺ complex is studied.

Figure 1.2: [Li(Uracil)]+- Xe example.

analytical Same as the *uracil example* but using an analytical expression as potential.

- n_2n_2 Here the interaction between two nitrogen molecules is studied. A fully custom potential can be implemented using *userpotential.f* file.
- Miscellaneous

external

An example in C with a generic external fit. The given test code supports both *external* and *external bulk* options. This code fits data from file *external.values* –value pairs "(x, f(x))" to fit–, using file *bounds.txt* as upper and lower limits, to a polynomial of degree n.

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

The polynomial degree is the number of coefficients minus one.

poly-fortran The same as above but written in fortran.

exponential Code in C to fit data from file *exponential.values* to an exponential.

$$\sum_{i=1}^{n} a_i e^{-b_i * x}$$

To use a exponential with **n** terms you must specify in file *job.txt* **coefficients=2*****n** and give them a name. The coefficient limits are taken from *bounds.txt* file.

mvariable multivariable example fitting.

- mopac: Change and/or set MOPAC_EXECUTABLE and MOPAC_LICENSE in file *external-mopac2009.sh* to run with MOPAC (any version from)2012 to 2016).
 - **mopac** It employs the interface with **MOPAC**. Source code for the interface tools is in the *src/mopac* folder.

shepherd It employs the enhanced interface with MOPAC.

- vc As in the previous one, it uses the enhanced interface with MOPAC. Taken from Homayoon, Vázquez, Rodríguez-Fernández, and Martínez-Núñez [5]
- **gradient** Optimizing aldehyde using gradients respect to Cartesian coordinates in a pm6 model parametrization.

2

Jobs

Chemistry is a class you take in high school or college, where you figure out two plus two is 10, or something.

Dennis Rodman, ex NBA player

The files needed for a *job* depend on the type of job to be done where an external program or tool evaluates the coefficients vector. For instance, an *ab initio*, *density functional theory* or *semiempirical* program can be employed to calculate the properties of our system, that will be employed as targets. So far, scripts and binaries are provided with the program to work with MOPAC, a program for *semiempirical* calculations, fitting the properties of a molecular system: energy barriers for the *unimolecular decomposition channels*, geometries and frequencies of the corresponding *transition states*, etc...

Other interfaces have been developed apart from MOPAC: CHARMM and mvariable.

2.1 Job configuration

GAFit can pass the coefficient vectors one per run, **external type**, a whole population per run, **external bulk type**, or as required by the external program, **external auto type**.

• Simple configuration: **external** or **external bulk**. There are six options to configure as shown in File 2.1:

type: external bulk. Whole population per run.

command: ./external, external command to execute per run. Normally a *shell script*.

coefficients: 5, number of coeficients.

external input: external.input, file where **GAFit** will write all the population.

external fit: external.fit, file where the **external command** will write the evaluation of each individual to be read by **GAFit**.

bounds: bounds.txt, bounds file.

File 2.1: External job simple configuration example

[job]	
evaluations:	50000
type:	external bulk
command :	./external
coefficients:	5
external input:	external.input
external fit:	external.fit
bounds :	bounds.txt

• Automatic configuration: **external auto**. Only two options to configure as shown in File 2.2:

type: external auto.

command: ./external,

GAFit obtains its configuration from **external command**. When **GAFit** calls the **external command** with a command line parameter with value "0", the external command write a file named "*response*" with the requested configuration to **GAFit**.

File 2.2: External job automatic configuration example

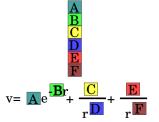
[job]	
evaluations :	50000
type:	external auto
command :	./external

	File 2.3:	Response	file from	the external	command
--	-----------	----------	-----------	--------------	---------

[job]	
type: external bulk	
coefficients: 16	
external input: mopac.input	
external fit: mopac.fit	
bounds: bounds.txt	
[coefficient names]	
BETAS H	
ZS H	
ALP H	
GSS H	
USS C	
UPP C	
BETAS C	
BETAP C	
ZS C	
ZP C	
ALP C	

2.1. Job configuration

GSS C	
GSP C	
GPP C	
GP2 C	
HSP C	

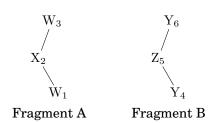

Intemolecular Module

A mathematician is a device for turning coffee into theorems.

Alfréd Rényi

The intermolecular module is intended to parametrize an internal intermolecular potential energy function to fit a set of interaction energies between two fragments (or intra in the same fragment).

Figure 3.1: Intermolecular potential pair example.


If we use an intermolecular potential pairs like Fig. 3.1:

- the genes are A, B, C, D, E, F.
- the chromosome is: ABCDEF

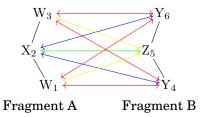
3.1 An example

Here, we are going to fit intermolecular potential pairs like $V = Ae^{-Br} + \frac{C}{r^{D}}$ between two fragments (e.g. a molecule). A, B, C, D are the coefficients to fit per each interaction. W, X, Y, Z are the atoms in the fragments.

In the simple configuration method use the keyword **application: intermolecular**

The data to fit are **geometries** and their correspondent **energies** like the File 3.1 named as *geometries.txt* and the file 3.2 named *energies.txt* respectively.

	6		
	Х	Y	Z
W	-13.694289	-0.182672	0.000000
Х	-13.299638	0.824476	0.000000
W	-12.403476	-0.960776	0.000000
Y	-14.263389	-0.348152	-0.831048
Z	-14.263389	-0.348152	0.831048
Y	-11.316612	0.153002	0.000000
	6		
	Х	Y	Z
W	-9.694289	-0.182672	0.000000
Х	-9.299638	0.824476	0.000000
W	-8.403476	-0.960776	0.000000
Y	-10.263389	-0.348152	-0.831048
Z	-10.263389	-0.348152	0.831048
Y	-7.316612	0.153002	0.000000


The **geometries** format is the known as "xyz" format. The **energies** are obtained from high level *ab initio* calculations.

T '1 0 0	• • •
HILE 3 2	energies.txt
I IIC 0.2.	CHCIERCO.UAU

-0.016881788	1	
-0.024242894	1	
-0.033981373	1	

The second column into *energies.txt* is the weight of the correspondent geometry in the fit.

3.2 Interactions

The interactions in our example are shown above. The atoms W_1 and W_3 are equivalents like Y_4 and Y_6 . So, there are 4 different interactions with some redundant coefficients:

$$A_{1,4} = A_{1,6} = A_{3,4} = A_{3,6}$$

$$B_{1,4} = B_{1,6} = B_{3,4} = B_{3,6}$$

$$\dots$$

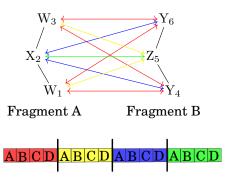
$$A_{2,6} = A_{2,4}$$

$$B_{2,6} = B_{2,4}$$

$$\dots$$

$$etc$$

We have to inform about this with a new file, **atom2type**, who maps between *atom number* in the geometry and their *type number*. This file is named *atom2type.txt*, and shown in File 3.3.


File 3.3: atom2type.txt

36		

1	W	1
0	37	0
2	Х	2
0	W	1
3	vv	1
4	v	9
4	1	0
5	7	4
Э	Z	-+
6	v	2
0	-	0

The information in the file is as follows:

- In the first line, the number of atoms in the Fragment A and the total number of atoms.
- In each of the following lines, the *atom number* as noted in the *geometry*, the chemical symbol and the *type number*.
- It can be done manually or by a utility included in the **GAFit**'s package called **needle**.

Using this information, **GAFit** knows that there are 4 different interactions, so there are 4 equations of 4 coefficients each. In this case, a **chromosome** from any individual has 16 real values:

3.3 charges

If our potential use partial charges, we must use another file, *charges.txt*:

- Partial charges must be specified using the *atom types* considered in the file *atom2type*.
- A template with 0 values can be generated by the **needle** tool.

One of the included potentials, the fourth, use charges. See Table 3.1. File 3.3 has four different *atom types*, so File 3.4 has four lines.

```
File 3.4: charges.txt
```

1	+0.12	
2	-0.24	
3	-0.08 +0.16	
4	+0.16	

3.4 needle

needle is a tool written in Perl to analyze the *geometry* -File 3.1– file building the *atom2type* -File 3.3– and *charges* -File 3.4– files automatically.

```
$ needle -h
needle v0.5 (c)GAFit toolkit - 2010-2013
collects sets of equivalent atoms
input: any geometries input file
        -d debug
        -p N fragment A atoms
        -o creates needed files
```

needle builds bonds and rings from atom Cartesian coordinates and search for equivalent atoms. This only work for F, H, Si, O, N, S, C and Au. You can invoke **needle** as shown below:

\$ needle -p 3 -o geometries.txt

-p 3 there are 3 atoms in fragment A.

-o create the files *atom2type* and *charges*.

More on **needle** in section 20.1.

3.5 Bounds

This is our chromosoma:

And now, we have to establish the limits of each coefficient, each gene. This is accomplished with a new file, *bounds.txt*. We can do this giving values to only the first fourth coefficients, or to all of them, setting the option **all coefficients** to **no** or **yes** respectively in the **[job]** section.

• option all coefficients:no, 4 bounds:

TEXT OR EMPT	ľ				
-100	100.	9			
0.	100.0	9			
-150	0. 5000.0	9			
3	5	0			

• option all coefficients:yes, 16 bounds:

TEXT OR EMPTY		
-100	100.	9
0.	100.0	9
-1500.	5000.0	9
3	5	0
0.	100.0	9
-1500.	5000.0	9
[]		

- The first and second column are the lower and upper bound respectively.
- In the third column:
 - ${\bf 0}\,$ the gen (coefficient) is handled as integer.
 - **9** the gen is handled as real number.
 - **1..8** the gen is handled as real number but using from 1 to 8 decimal places as specified here.
- the first line is skipped, so you can leave it empty or write a comment on it.

3.6 Fitting

There are three types of fitting:

absolute

$$\sum \left[(\mathbf{VReference}_i - \mathbf{VCalculated}(i))^2 \ \mathbf{Weight}(i) \right]$$

relative

$$\sum \left[\frac{\left(\mathbf{VReference}_i - \mathbf{VCalculated}(i) \right)^2}{\mathbf{VReference}_i^2} \, \mathbf{Weight}(i) \right]$$

user This option route the fitting to a user defined function.

3.7 Defined potentials

The value of **potential** in the section **[job]** selects the defined potential to use as shown in Table 3.1. We have to use the number 1 from table.

Value	Coefficients	Potential
-1	any	any user defined in userpotential.f
0	any	any analytical expression defined in an [analytical] section
1	4	$V = Ae^{-Br} + \frac{C}{r^D}$
2	6	$V = Ae^{-Br} + \frac{C}{r^D} + \frac{E}{r^F}$
3	8	$V = Ae^{-Br} + \frac{C}{r^D} + \frac{E}{r^F} + \frac{G}{r^H}$
4	2	$V = A\left[\left(\frac{B}{r}\right)^{12} - \left(\frac{B}{r}\right)^6\right] + 332.0532\frac{q_i q_j}{r}$

Table 3.1: Included potentials.

3.8 Final configuration

Now, we can write the configuration like File 3.5. All the options, except the **type**, **command** and **Evaluations**, are defaults, so they could be omitted. The option **Evaluation: 5000000** means that **GAFit** run for **5000000** generations and then finish.

File 3.5: job.txt

[job]		
type: external auto		
command: external-intermolecular.sh		
Evaluations:	500000	
Geometries :	geometries.txt	
Energies :	energies.txt	
Atom2Type:	atom2type.txt	
Bounds:	bounds.txt	
Potential :	1	

The program binary which comprises the **intermolecular** module is **intpot**. We have to call it passing the correct options. In the *job.txt* we call *external-intermolecular.sh*–File **3**.6– which in turn call **intpot** and sets some options.

File 3.6: external-intermolecular.sh

```
#!/bin/sh
export EXTERNAL_INPUT="intpot.input"
export EXTERNAL_FTT="intpot.fit"
export BOUNDS_FILE="bounds.txt"
intpot $1 bulk
```

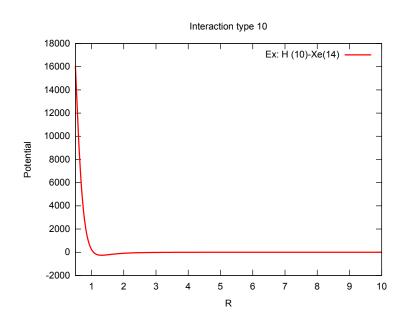
The simple configuration method equivalent to both File 3.5 and File 3.6 is only 3.7.

File 3.7: simple configuration job.txt

[job]	
Evaluations:	5000000
Application :	intermolecular
Potential:	1

the **inpot** binary must be in the PATH!

3.9 Results


GAFit runs in the folder where is the configuration file, *job.txt*-, writing the best values found till now to the file *best.txt*. After the **5000000** generations, in this file is the best result obtained. Is this the best result possible? Sure not, but it is the best found in this run.

671108.383527237223	· · · · ·
5.0000000000	
-480.511518927649	
-522.865043822352	
7.0000000000	
[]	
Fitness: 7.063407502683	

3.10 Plotting results

Included in the **intermolecular** module is the **fitview** utility –More in section 20.2–.

- **fitview** extracts and create a bunch of plots to view the results using the saved *best.txt* file coefficients.
- you can select the upper and lower limits and the stepping **-delta** option- of the plot.
- it generates two files per plot, one with the data and other with the **gnuplot** commands needed to create graphic files –bmp, jpeg, pdf, etc– or direct plot to a graphical terminal. The data file could be used to load data to a spreadsheet.
- the plots are:
 - one per interaction.
 - an general evaluation with all the geometries.
 - all the interactions in the same plot.

3.11 FORTRAN interface

As stated before, you can also write your own routines in FORTRAN to add a new intermolecular pair potential. To do so, the **intermolecular** module expose to the user two FORTRAN modules and two routines.

- FORTRAN modules:
 - VGLOBALES: it give access to the program core variables.
 - USERDATA: here, the user can load and customize its own variables and data.
- subroutines and functions:
 - function **ix**(**i**,**j**,**k**): usefull to access coefficients knowing only which are the atoms involved in the interaction.
 - **k** k=1, coefficient A, k=2, coefficient B, ...
 - **i** first interaction atom.
 - **j** second interaction atom.
 - subroutine **coordinates(geo,atom,x,y,z)**: to obtain the atom's Cartesian coordinates.
 - geo geometry number.
 - atom atom number.
 - **x,y,z** returning coordinates from subroutine.

There are two options to add a new potential in the code -src/inter folder-:

• Add it into *potential.f.* In this file are coded the potentials 1,2,3 and 4. You can modify one of them or add a new one, assigning it a positive integer number. The subroutines to modify are:

- **setcoefs** to register the number of parameters needed.
- getcharges to take into account if the charges are needed.
- **potRouter** to route the new potential to its function.
- curRouter to route fitview utility to the new potential.

In the **[job]** change potential option to **potential=n**, where **n** is the number choosen in **potRouter** subroutine to route to the new potential.

- Modify userpotential.f: this file is a *template*, you only need to customize it for your needs:
 - you must write the potential to use.
 - modify the fitting function or write a new one.
 - in the [job] change potential option to potential=-1.

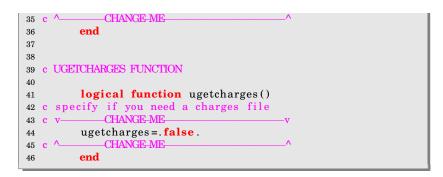
In both cases is mandatory to recompile **GAFit**. We are going to view in detail how to implement a new potential using *userpotential.f*.

• Add your code to userdata module if needed.

1	с	USER POTENTIAL
2	с	please change as needed
3		
4		
5	с	USER DATA MODULE
6	Č	
7		module userdata
8		implicit none
9		save
-	~	v———————————v
		define your variables here
	С	define your variables here
12		
		^^ CHANCE ME^
14		end module userdata
15		
16		
17	С	USERREAD SUBROUTINE
18		
19		
20		use userdata
21	С	v—————————————————————————————————————
22	С	your code to read external files here
23		
24		
25	с	^^
26		end

• Change the number of coefficients and if you are using the *charges* file.

```
29 C USETCOEFS FUNCTION


30

31 integer function usetcoefs()

32 c here specify the number of coefficients

33 c v <u>CHANGE-ME</u>v

34 usetcoefs=4
```


• Here you have nothing to change...

```
48 c USERPOT SUBROUTINE
49
50
         subroutine userpot(geo,x,nmax,vpot)
         use vglobales
51
52 C
53
  c to use your external data
54
         use userdata
55 C
56
         integer nmax, geo, i, j, k
         double precision d, vpot, userv
57
58
         double precision X(nmax)
59
                    -ME-IF-NEEDED
         vpot=0.0d0
60
  c note: here all interactions are calculated
61
         do i=1,nprox
62
          do j=1,nsam
63
64
          k=j+nprox
65
          d=r(geo,i,k)
66
          vpot=vpot+userv(d, i, k, x, nmax)
67
          enddo
         enddo
68
                                           ∧
69
             -CHANGE-ME-IF-NEEDED------
         return
70
         end
71
```

• Modify or write your potential here.

```
74 c FUNCTION USER POTENTIAL
75 c write userv using ix function to access
     individual coefficients
76 <mark>C</mark>
77 c use CALL coordinates(geometry, atom, x, y, z)
78 c to access individual coordinates.
79
         double precision FUNCTION userv(r,i,j,x,m)
80
         implicit none
81
         integer i, j, m, ix
82
         dimension x(m)
83
  c note: here ONE interaction is calculated
84
              HANGE
85 C V-
         double precision x,r,a,b,c,d
86
         A=x(ix(i,j,1))
87
         B=x(ix(i,j,2))
88
89
         C=x(ix(i,j,3))
         D=x(ix(i, j, 4))
90
         userv=A*EXP(-B*R)+C/R**D
91
92
             CHANGE-M
```

93	RETURN
94	END

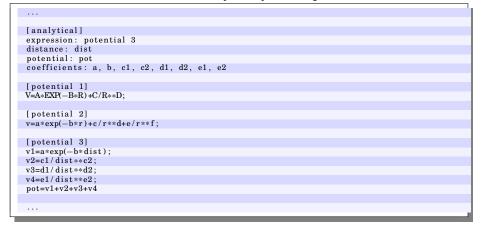
• Change or write your fitting function.

97	с	USER FITTING FUNCTION
98	с	write here the user fitting function
99	с	if you only need the fitting function
100	с	leave the line "call potRouter" unchanged
101	с	and change the line "userfitting=" with your
102	С	fitting function.
103	С	if you have a userv function (above this), you can
104	С	use it here, or access it via potRouter
105		
106		double precision function userfitting(x,m,geo)
107		use vglobales
108		use userdata
109		double precision x, vpot
110		integer m, geo
111		dimension x(m)
112	С	v—————————————————————————————————————
113		call potRouter(geo,x,m,vpot)
114		userfitting =(v(geo)-vpot)*(v(geo)-vpot)
115	С	^CHANGE-ME^
116		return
117		end

- Recompile gafit.
- in the [job] change potential option to potential=-1
- run GAFit.

3.12 Analytical expressions

You can use an analytical expression as potential setting **potential=0** in the **[job]** section as shown in File 3.9.


File	3.9	Ana	lvtical	expression
I IIC	0.0.	1 ma	ly utcar	CAPICOSION

[job]							
Evaluations: 5000000							
Geometries: geometries.txt							
Energies :	energies.txt						
Atom2Type:	atom2type.txt						
Bounds :	bounds.txt						
Potential:	0						
[analytical]							
coefficients: a, b, c, d							
distance:							
	test potential 1						
potential:	pot						
[test potenti	ial 1]						
	$v_{1=a*exp(-b*dist)};$						
v2=c/dist**d;							
pot=v1+v2							
-							

- Analytical expressions are compiled to *bytecode* once.
- The bytecode is run into a virtual Floating Point Unit (FPU) as needed.

- As interpreted code, It run 10 times slower than FORTRAN potentials compiled into source code.
- They are easy to write and modify.
- There is a utility, **ufpu**, to test them before **GAFit** run.
- The [analytical] section informs **GAFit** which are the names in use for the coefficients, the distance and the potential variables. Also, in this section you tell gafit which analytical expression to use. You can have many analytical expressions defined, each one in its own section as shown in the File **3**.10.

	n <i>r</i>	1 1	•
- H'HA Y 10+	Many	analytical	ovnroggiong
T HE 0.10.	IVIAILY	anaryucar	expressions

The analytical expressions compiler supports the operators and functions noted in Table 3.2.

Operators		Precedence	Example
=	assignment	0	a=b
+	addition	1	a+b
-	subtraction	1	a-b
*	multiplication	2	a∗b
/	division	2	a/b
unary +	unary plus	3	+a
unary -	unary minus	3	-a
* *	a raised by power b, a^b	4	a**b
^	a raised by power b, a^b	4	a^b
Puntuaction			
()	change precedence		(a+b)*c
,	comma, separate argu-		pow(a,b)
	ments in functions		
;	semicolon, separate in-		a=b+c; d=e+f
	dividual expressions		
Functions			
exp	number e raised by		exp(a)
1	power a, e^a		-
pow	a raised by power b, a^b		pow(a,b)
sin	sine of a (in radians),		sin(a)
	$\sin(a)$		
cos	cosine of a (in radians),		$\cos(a)$
	$\cos(a)$		

Table 3.2: Operators and functions supported

4

MOPAC module

In mathematics you don't understand things. You just get used to them.

John von Newmann

This module was designed for reparameterizations of semiempirical Hamiltonians interfacing MOPAC, which may be useful for direct dynamics simulations of chemical reactions

The **MOPAC** interface, File 4.1, are based in three tools:

injector configure GAFit and create the files needed to run MOPAC.

extractor analyzes **MOPAC** output to extract and convert useful data – like heats of formation, Cartesian coordinates, etc- to a format suitable for **fitter**. Also controls if there is execution errors. All the extracted information are passed to **fitter**.

fitter evaluates the data and give out the results to GAFit.

File 4.1: External command to interface with MOPAC

I	1	#!/bin/sh
	2	export MOPAC_LICENSE=\$HOME/mopac2009
	3	
	4	<pre>export COEFS_TEMPLATE="template.coefs"</pre>
	5	<pre>export MOPAC_TEMPLATE="template.mop"</pre>
	6	<pre>export MOPAC_MOP="mopac_input.mop"</pre>
	7	<pre>export EXTERNAL_INPUT="mopac.input"</pre>
	8	<pre>export EXTERNAL_FIT="mopac.fit"</pre>
	9	<pre>export EXTRACTED_DATA="extracted.data"</pre>
	10	export BOUNDS_FILE="bounds.txt"
	11	
	12	injector \$1
	13	if ["\$1" -ne "0"]
	14	then
	15	\$MOPAC_LICENSE/MOPAC2009.exe \$MOPAC_MOP
*		

```
16 extractor $1
17 fitter $1 $EXTRACTED_DATA $EXTERNAL_FIT
18 fi
```

The interface has some features:

- It could be configured by *environment variables*. All tools have notice of them.
- All the *environment variables* have default values. File 4.2.

File 4.2: Minimal external command taking into account defaults

```
1 #!/bin/sh
2 export MOPAC_LICENSE=$HOME/mopac2009
3
4 export MOPAC_MOP="mopac_input.mop"
5
6 injector $1
7 if [ "$1" -ne "0" ]
8 then
9 $MOPAC_LICENSE/MOPAC2009.exe $MOPAC_MOP
10 extractor $1
11 fitter $1
12 fi
```

Three files are needed:

coefficients template: The *COEFS_TEMPLATE* are used by **injector** to build an external file with the semi empirical parameters fed by **GAFit**.

BETAS H	-6.173787	
ZS H	1.188078	
ALP H	2.882324	
GSS H	12.848	
USS C	-52.028658	
UPP C	-39.614239	
BETAS C	-15.715783	
BETAP C	-7.719283	
ZS C	1.808665	
ZP C	1.685116	
ALP C	2.648274	
GSS C	12.23	
GSP C	11.47	
GPP C	11.08	
GP2 C	9.84	
HSP C	2.43	

This is our chromosoma using the above coefficients template:

MOPAC template: The *MOPAC_TEMPLATE* are used by **injector** to create the input file for **MOPAC** where each @ will be replaced with a *COEFS_TEMPLATE* name.

	precise ex	tern	al=@ geo-ok	nosym					
Η	0.0000000) +0	0.00000	00 +0	0.000000) +0)		
	ç		0.1275						
С	1.09852142	2 +1	0.00000	00 +0	0.000000	0 +0	1	0	0
C	√ −0.1565	0 1	100 10005	F O 1	0.000000		0	-	0
С	1.33416836 (-0.0994)) +1	123.19005	76 +1	0.000000) +0	2	1	0
Н	1.09879509) 1	115.32263	69 1	179.992911	5 . 1	2	1	3
п	Ω 0.1270		110.02200	05 +1	179.992911) +1	4	1	0
н	1.10533055		122.16404	14 +1	179.9944757	7 +1	3	2	1
	(0.1514		122.10101		110.001110		0	-	-
С	1.41933576	3 +1	114.52087	39 +1	179.9977508	3 +1	3	5	2
	$\zeta - 0.1114$								
Ν	1.16399609) +1	179.11285	57 +1	1.2752342	2 +1	6	3	5
	$\zeta - 0.0387$								
oldg	geo AM1 pre	cise	external=@	force	geo—ok nosy	m			
۸Ŋ/[1	nnosias ta	out	mal_@ gas	olt no					
AM1	precise ts	exte	ernal=@ geo	–ok nos	sym				
AM1	precise ts	ext	ernal=@ geo	–ok nos	sym				
AM1 C	precise ts 0.000000		ernal=@ geo 0.000000		sym .000000 0	()	0	0
	1	0	0	0 0)	0 0	0
С	0.000000	0 1	0.000000	0 0 0 0	.000000 0	-	-	-	
C C C N	0.000000 1.310566 2.179061	0 1 1	0.000000		.000000 0 .000000 0		2 3	0 1 2	0 0 1
C C C N H	0.000000 1.310566 2.179061 1.160916	0 1 1 1 1	0.000000 0.000000 104.132782 160.493759 126.972862	0 0 0 0 1 0 1 0 1 0	.000000 0 .000000 0 .000000 0 .000000 1 .000000 1		- [2	0 1 2 2	0 0 1 3
C C C N	0.000000 1.310566 2.179061 1.160916 1.076805 1.084538	0 1 1 1 1	0.000000 0.000000 104.132782 160.493759 126.972862	0 0 0 0 1 0 1 0 1 0 1 180	.000000 0 .000000 0 .000000 0 .000000 1		2 3	0 1 2	0 0 1

In the example, there are three chained calculations (reactive optimization, frequencies calculation with the reactive optimized geometry and a transition state search).

bounds.txt: The **bounds.txt** file especifies the boundaries of the semiempirical parameters.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	е	eter	parar	limit,	upper	limit,	Lower
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ę	.791	-6	.5564	-5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ç	306	1.	.0692	1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ç	170	3.	.5940	2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ç	132	14.	.5632	11.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ę	.231	-57	.8257	-46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ç	.575	-43	.6528	-35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ç	.287	-17	.1442	-14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ç	.491	-8	.9473	-6
2.3834 2.913 9 11.007 13.453 9			ç	989	1.	.6277	1.
11.007 13.453 9			ç	853	1.	.5166	1.
			ç	913	2.	.3834	2.
			ç	453	13.	.007	11.
10.323 12.617 9			ç	617	12.	.323	10.
9.972 12.188 9			ç	188	12.	.972	9.
8.856 10.824 9			ç	824	10.	.856	8.
2.187 2.673 9			ç	673	2.	.187	2.

The type of extracted data are shown in the Table 4.1.

mnemonic	code	data fields	data
HEATFCAL	0	1	Heat of formation in kcal/mol
HEATFJUL	1	1	Heat of formation in kJ/mol
NUMATOMS	2	1	Number of atoms
CARTESIAN	3	5	Sequence number in structure, atom
			symbol and x, y, z coordinates
NUMFREQ	4	1	Number of total frequencies
FREQUENCIES	5	2	Sequence number and value in cm^{-1}
CALCPERIND	6	1	Total number of different calculations
			per coefficient vector
GRADIENTS	7	1	Gradients, x,y,z components per atom
NUMCONF	8	1	Number of states considered in one-
			electron excitations
DIPXYZ	9	4	Components x, y, z of the effect of
			dipole operator on states
EEL	10	3	Energies on states

Table 4.1: Extracted data

This data is compared to reference values in the file *conditions.txt*. The fit is calculated, taking into account the weight, as:

 $\mathbf{fit} = \begin{cases} \sum \left[\mathbf{Reference}_i - \mathbf{Calculated}_i \right]^2 \mathbf{Weight}_i \text{ if calculation is done.} \\ \\ \mathbf{penalty} \text{ if calculation fails.} \end{cases}$

fitter conditions

The conditions that can be used to compare are shown in Table 4.2 and established in the File 4.3.

delt 1	2 1	00.6	0.1					
frequency	2	15	3271.0	1e-4				
distance	3	1	7	3.70	100.0			
penalty 16	10							

This interface could be used as a template or code guide to build other different module to face a new external program of interest.

However, in the **MOPAC** specific case, this approach presents some problems:

- If MOPAC fails, all the process tree could be hang and it is necessary to kill manually the problematic MOPAC process.
- If a file contains some calculations and one of this fail, all the rest fail or have no valid data.
- The design were to process many templates solely by one MOPAC process. But due the problems shown above, it only could process one template at time.

Condition	data fields	data	comment
heat	3	calcA value weight	Heat of formation of calculus calcA
delt a	4	calcA calcB value weight	Difference between heat of formation of cal- culation <i>calcA</i> and <i>calcB</i> . $\Delta = (calcA - calcB)$ in kcal/mol
freq uency	4	calcA N value weight	Frequency number N of the calculation <i>calcA</i>
gradient	4	calcA N value weight	Gradient number N of the calculation <i>calcA</i> . N varies from 1 to 3*NUMATOMS.
dist ance	5	calcA atom1 atom2 value weight	Distance between <i>atom1</i> and <i>atom2</i> into calculation <i>calcA</i>
angle	6	calcA atom1 atom2 atom3 value weight	Angle between <i>atom1</i> , <i>atom2</i> and <i>atom3</i> into calculation <i>calcA</i>
dihe dral	7	calcA atom1 atom2 atom3 atom4 value weight	Dihedral angle between <i>atom1</i> , <i>atom2</i> , <i>atom3</i> , and <i>atom4</i> into calculation <i>calcA</i>
dipx	4	calcA state value weight	Component <i>x</i> of the effect of dipole operator on <i>state</i> into calculation <i>calcA</i>
dipy	4	calcA state value weight	Component y of the effect of dipole operator on <i>state</i> into calculation <i>calcA</i>
dipz	4	calcA state value weight	Component z of the effect of dipole operator on state into calculation calcA
eel	5	calcA state order value weight	State energy into calculation <i>calcA</i> . <i>State</i> : 1 for singlet, 2 for doublet and 3 for triplet. <i>Order</i> is the order in the listing (eg. 1 for first singlet, 2 for second singlet and so on). If there are no data for this state, a penalty is applied.
pena lty	1	penalty	Fit if any of the MOPAC calculations failed for a given coefficient vector. If not set, default value is 1.0e10.

Table 4.2: Fitter conditions

4.1 Enhanced interface with MOPAC

To resolve the problems shown, an enhanced interface was developed with a new tool: **shepherd**.

shepherd can:

- Execute, control and maintain a optimal number of MOPAC processes near to the computing resources number –cpus, cores ... if the output file will be written in a local storage resource.
- Detect and kill hung MOPAC processes automatically.
- Create fake output files for the killed MOPAC processes.
- Gather all output files, including fakes, building a unique file to be processed by **extractor**.

The external command, simplified using default values, are shown in File 4.4.

File 4.4: Simplified external command to use with shepherd

```
1 #!/bin/sh
2 export MOPAC_LICENSE=$HOME/mopac2009
3
4 injector $1 bulk
5 if [ "$1" -ne "0" ]
6 then
7 shepherd
8 extractor $1
9 fitter $1
10 fi
```

This only works well using a local storage, not shared resources like NFS.

To use this new interface, you only need replace the call to MOPAC with a call to **shepherd** in the *script*. Compare File 4.2 with File 4.4.

5

CHARMM module

This module interface **GAFit** with the **CHARMM** program in order to facilitate direct parameterizations of force fields.

mvariable module

GAFit can also be employed to fit a user-defined multivariable function to a set of data points using the *mvariable* module.

Simple configuration

Any sufficiently advanced bug is indistinguishable from a feature.

Rich Kulawiec

There are five simple configuration modules. The parameters and options for *simple configurations* are sumarized in Table 15.2.

The folder *simple-mod-examples* contains the examples from *Simpli-fiedUserGuide.pdf*.

7.1 Intermolecular simple configuration

File 7.1: Intermolecular job.txt file.

[Job]	
Evaluations :	1000000
Application :	intermolecular
Potential: 2	

File 7.1 shows a simple configuration example.

7.2 Mopac simple configuration

Two MOPAC examples are developed in Sections 12 and 13. The interface is explained in Sections 21 and 22.

The module follows the **MOPAC** enhanced interface. The *shell script* needed for the interface is created on the fly by the module.

File 7.2: Mopac job.txt file.

[Job]	
Evaluations: 100000	
Application: MOPAC	
Exec: /usr/programs/mopac/MOPAC2016.exe	

File 7.2 shows a simple configuration example.

7.3 Charmm simple configuration

The CHARMM interface is explained in Section 25.

File 7.3: Charmm job.txt file.

[Job]
Evaluations: 50000
Application: CHARMM
Exec: /usr/programs/charmm/exec/gnu/charmm
Refgeom: geo-1.crd
Calculated energies: 1 3

7.4 Mvariable simple configuration

The **mvariable** module is explained in Section 26.

File 7.4: Mvariable job.txt file.

```
[Job]
evaluations: 100000
application: mvariable
...
```

7.5 Generic simple configuration

The **mvariable** module is explained in Section 27.

File 7.5: Generic job.txt file.

```
[job]
evaluations: 5000
application: generic
ncores: 1
executable: ./genericscript.sh
template: template
reference values: reference.values
```

Part II

Step by step examples

8

The examples

There are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult.

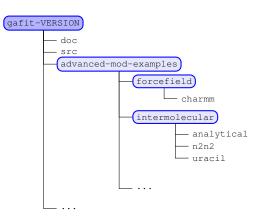
Sir Charles Antony Richard Hoare

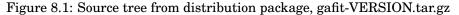
The configuration, compilation and installation phases are done by the *GNU autotools* utilities:

```
tar -xvzf gafit-VERSION.tar.gz
cd gafit-VERSION
./configure
make
```

The source tree from the distribution package –gafit-VERSION.tar.gz– are shown in Figure 8.1.

In this case, you can use the examples directly in their folder: There is a handy "make test" *makefile target* ready to run the example:


make test


If you install GAFit:

make install

the default installed tree is shown in Figure 8.2. Once installed, take into account that:

\$HOME/bin: where the binaries are installed.

\$HOME/share: where the examples, documentation and other files are installed.

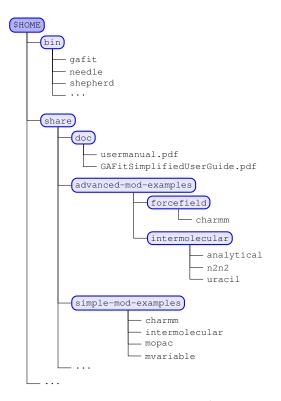
You can run the examples expanding the compressed *tar.gz* data file if present and running:

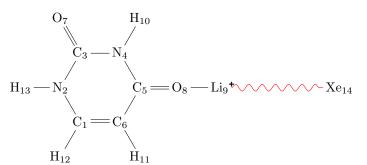
\$HOME/bin/gafit

You also must copy in the folder other binaries needed from **\$HOME**-/**bin** if you have "." included in your **PATH** variable, or better, set the environment variable **PATH** pointing to \$HOME/bin:

export PATH=\$PATH:\$HOME/bin/gafit

The examples in this part are taken from the *advanced-mod-examples* folder.




Figure 8.2: Installed tree into \$HOME

9

Xe + (Li(Uracil))*

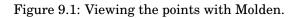
As a rule, software systems do not work well until they have been used, and have failed repeatedly, in real applications.

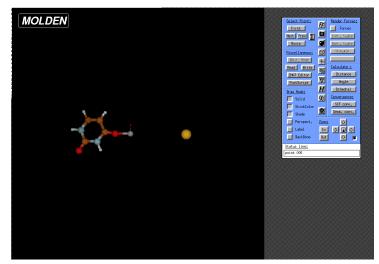
Dave Parnas

We shall use the **Xe** + [Li(Uracil)]⁺ system as an example. In this example, we fit one of the potentials shown in Table 17.2 to the *interaction energies* between Xe and the [Li(Uracil)]⁺ complex, computed by *ab initio* calculations.

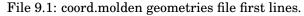
These files are included in the *intermolecular/uracil* folder. You can run it typing:

```
$ tar -xvzf uracil.tgz
$ gafit > output.txt
```


Once these commands are employed, some files are extracted and **GAFit** is run.


9.1 Preparing input files

The input file *coord.molden* contains the set of geometries employed in the *ab initio* calculations to obtain the *interaction energies*. The geometries


can be viewed using molden (see Fig. 9.1):

```
$ molden coord.molden
```


The very first lines of this file are shown in File 9.1.

14	
C 0.000000 0.000000 0.000000	
N 0.000000 0.000000 1.354549	
C 1.152143 0.000000 2.127502	
N 2.311655 0.000000 1.343162	
C 2.393034 0.000000 -0.016579	
C 1.152592 0.000000 -0.718330	
O 1.169220 0.000000 3.330930	
O 3.523582 0.000000 -0.559509	
Li 4.968935 0.000000 -1.513449	
H 3.175968 0.000000 1.870824	
H 1.142155 0.000000 -1.793856	
$H = -0.971622 \ 0.000000 \ -0.471648$	
$H = -0.866367 \ 0.000000 \ 1.874333$	
Xe 17.488048 0.000000 -9.776123	
14	
C 0.000000 0.000000 0.000000	
N 0.000000 0.000000 1.354549	
C 1.152143 0.000000 2.127502	
N 2.311655 0.000000 1.343162	
C 2.393034 0.000000 -0.016579	
[]	

Also, we need the *interaction energies* corresponding to each geometry in *coord.molden*. These energies are used to fit our model potential and they are listed in the file *energies.txt* (see File 9.2). This file follows the specifications described in 17.1.

File 9.2:	energies.txt	file.

0.000/190_1
-0.006436 1
-0.012603 1
-0.024660 1
-0.053662 1

-0.151027 1		
-0.208324 1		
-0.298249 1		
-0.443987 1		
-0.576097 1		
-0.762092 1		
-1.031527 1		
-1.431174 1		
-2.022694 1		
-2.554913 1		
-3.208230 1		
-3.966854 1		
-4.767595 1		
-5.448579 1		
-5.645469 1		
-5.658691 1		
-5.387761 1		
-4.692701 1		
-3.377588 1		
-1.167944 1		
2.322455 1		
7.633202 1		
15.516838 1		
27.007602 1		
66.979582 1		
146.056144 1		
297.072019 1		

There are two columns, the first one is the *interaction energies* and the second one is the *weight* of each geometry. The order must be the same of the *geometries* file.

Taking into account that some of the atoms in the $[Li(Uracil)]^+$ complex (*Fragment A* below) can be equivalent, we have to determine the different atom types. To achieve this, we shall use the *needle* tool–see 3.4–.

```
$ needle -p 13 -o coord.molden
[...]
Fragment A atoms:13
There are 14 different atom types. Fragment A:13,
Fragment B:1, Common types:0
Total diff interactions: a vector of 13 coefs, X(k)
Vector Atom2Type:
Atom2Type(i)={1 2 3 4 5 6 7 8 9 10 11 12 13 14 }
two files created: atom2type.txt and charges.txt
```

When we run *needle* using the **-p** and **-o** switches, we have to provide the number of atoms present in *fragment A*. Additionally, with these options *needle* creates the *atom2type.txt* –File 9.3– and *charges.txt*–File 9.4– files (see section 17.1). As seen above, the output informs that, in this case, there are no equivalent atoms. In our example, there are 14 different atom types, and 13 different interactions between *fragment A* and *fragment B* (Xe)

File 9.3: atom2type.txt file.

13 14			
1	С	1	
2	Ν	2	
3	С	3	
4	Ν	4	
5	С	5	
6	С	6	
7	0	7	

8	0	8	
9	\mathbf{LI}	9	
10	Η	10	
11	н	11	
12	Η	12	
13	Н	13	
14	XE	14	

The number of different types of atoms determines the *charges.txt* file with a line per atom type. The generated *charges.txt* file is a dummy file to be used as a template and you need to edit it, if you use a potential with charges.

File 9.4: charges.txt file	e.
----------------------------	----

1	0.000000	
2	0.00000	
3	0.00000	
4	0.000000	
5	0.00000	
6	0.00000	
7	0.000000	
8	0.000000	
9	0.000000	
10	0.00000	
11	0.00000	
12	0.00000	
13	0.00000	
14	0.00000	

We shall use the implemented potential number 1 with four coefficients – from Table 17.2–.

$$V = Ae^{-Br} + \frac{C}{r^D}$$

So we need a file with the lower and upper limits of the coefficients –the bounds–. Here we can specify the same limits for all interactions or different limits per each interaction. We choose the former option, as shown in File 9.5. The first and third coefficients for each interaction are real, and the second and fourth, integers.

File 9.5:	bounds.txt file.
-----------	------------------

TEXT TEXT TEXT			
0. 10	00000.	9	
0.	10.0	0	
-1500.	0.	9	
4.0	8.0	0	

Next, we have to edit the *job.txt* file to configure **GAFit**. The file *job.txt* that comes with the uracil example is the one shown in the File 9.6^{1} .

File 9.6: job.txt file.

[parameters]	
population :	100
crossover rate:	0.75
blx_alpha :	0.5
mutation rate:	0.1
elitism:	yes
tournament size:	5
crossover:	sbx
mutation :	sigma
sigma :	0.1
direction :	min
[job]	

 $^1 {\rm You}$ safely can delete the entire $[{\bf parameters}]$ section. All lines are default values.

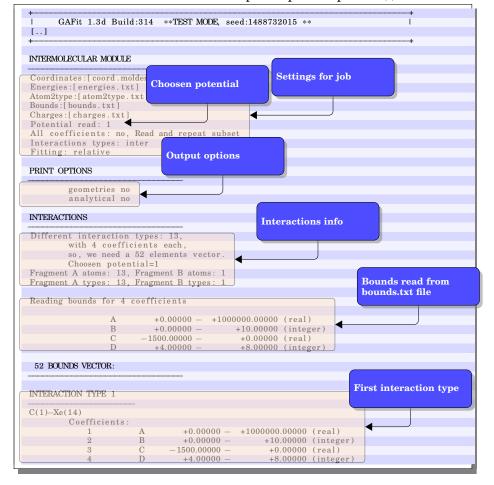
type: external auto
command: ./external-intpot.sh
runs: 1
evaluations: 5000
Geometries: coord.molden
Energies: energies.txt
Atom2type: atom2type.txt
Bounds: bounds.txt
Charges: charges.txt
Potential: 1
All coefficients: no
auto weights: no
fitting: relative
test: 1488732015
[print]
geometries: no
runs: no

job.txt is split in some sections, the text between square brackets, with options as key-value pairs.

The different sections and their possible options are discussed in section 15. In the **[job]** section we have **potential:** 1 and **All coefficients: no**.

As you can see in Table 17.2, this potential function has a total of 4 coefficients and we want the same bounds (**All coefficients: no**) for all two-body interactions. This is specified in the *bounds.txt* shown in File 9.5, with only 4 lower and 4 upper bounds for the coefficients.

The last column of this file is employed to specify whether the coefficient is an integer, a real number or a real number with some fixed decimal $places^2$.


9.2 Running the example

If you run **GAFit** from the folder where all the above files are located you get the output file shown in Files 9.7, 9.8, 9.9, 9.10 and 9.11.

\$ gafit > output.txt

As we mentioned above, there are 13 different two-body interactions with four coefficients each one, so we have a vector of 52 coefficients to optimize. Two of the coefficients, B and D, are integer, as indicated in File 9.5.

²The few decimal places, the few the search domain. This speed up calculations

File 9.7: Uracil example output: output.txt (i)

File 9.8: Uracil example output: output.txt (ii)

INTERACTION TYPE 2	-			
N(2)-Xe(14)				
Coefficients:				
5	Α	+0.00000 -	+1000000.00000	(real)
6	В	+0.00000 -	+10.00000	(integer)
7	С	-1500.00000 $-$	+0.00000	(real)
8	D	+4.00000 -	+8.00000	(integer)
INTERACTION TYPE 3				
$O(2)$ $\mathbf{Y}_{-}(14)$	-			
C(3)-Xe(14) Coefficients:				
			4000000000000000	
9	Α		+1000000.00000	
10	в		+10.00000	
11	С		+0.00000	
12	D	+4.00000 -	+8.00000	(integer)
INTERACTION TYPE 4				
	-			
N(4)–Xe(14)				
Coefficients:				
13	Α	+0.00000 -	+1000000.00000	(real)
14	В	+0.00000 -	+10.00000	(integer)
15	С	-1500.00000 $-$	+0.00000	(real)
16	D	+4.00000 -	+8.00000	(integer)
INTERACTION TYPE 5				
	-			

9.2. Running the example

Coefficients:				
17	Α	+0.00000 -	+1000000.00000	(real)
18	B	+0.00000 -	+10.00000	
19	č	-1500.00000 -	+0.00000	
20	D	+4.00000 -		(integer)
INTERACTION TYPE 6	2		10.00000	(integer)
	-			
C(6)-Xe(14)				
Coefficients :				
21	Α		+1000000.00000	
22	в	+0.00000 -	+10.00000	
23	С	-1500.00000 $-$	+0.00000	
24	D	+4.00000 -	+8.00000	(integer)
INTERACTION TYPE 7				
O(7)–Xe(14)	-			
Coefficients:				
25	А	10.0000	+1000000.00000	(real)
26	B	+0.00000 -	+10.00000	
20	C	-1500.00000 -	+0.00000	
28	D	+4.00000 -		(integer)
INTERACTION TYPE 8	D	+4.00000 -	+0.00000	(Integer)
	-			
O(8)–Xe(14)				
Coefficients:				
29	Α		+1000000.00000	
30	в	+0.00000 -	+10.00000	
31	С	-1500.00000 $-$	+0.00000	
32	D	+4.00000 -	+8.00000	(integer)
INTERACTION TYPE 9				
Li(9) - Xe(14)	-			
Coefficients:				
33	Α	+0.00000 -	+1000000.00000	(real)
34	B	+0.00000 -	+10.00000	
35	Ē	-1500.00000 -	+0.00000	
36	Ď	+4.00000 -		(integer)
INTERACTION TYPE 10				
	-			
H(10)-Xe(14)				
Coefficients:				
37	A		+1000000.00000	
38	B	+0.00000 -	+10.00000	
39	C D	-1500.00000 -	+0.00000	
40 INTERACTION TYPE 11	D	+4.00000 –	+8.00000	(integer)
INTERACTION TIFE II	_			
H(11)–Xe(14)				
Coefficients:				
41	А	+0.00000 -	+1000000.00000	(real)
42	В	+0.00000 -	+10.00000	
43	C	-1500.00000 -	+0.00000	
44	Ď	+4.00000 -		(integer)
INTERACTION TYPE 12				2
	-			
H(12)–Xe(14)				
Coefficients:		0.00000	1000000 00000	
45	A		+1000000.00000	
46	B	+0.00000 -	+10.00000	
47	C	-1500.00000 -	+0.00000	
48	D	+4.00000 -	+8.00000	(integer)

In the output, next lines explain how the interactions are and their per coefficient bounds. In this case, the bounds are equal for any interaction.

INTER	RACTION TYPE 13					I
		-				
H(13))—Xe(14)					
	Coefficients:					
	49	Α		+1000000.00000		
	50	В	+0.00000 -		(integer)	
	51	С	-1500.00000 $-$	+0.00000		
	52	D	+4.00000 -	+8.00000	(integer)	
+	Q					-+
1	Settings for GA	1				1
+	runs :	1				+
	evaluations:	500				1
	population:	100				1
	crossover:	sbx				
i	cossover rat		.750000			
i	blx alpha:		.500000			
i i	eta_sbx:		.000000			i
1	mutation :	sigm				1
1	mutation rat	.e: 0	.100000			1
1	sigma :	0	.100000			1
1	integer mutatio	n: rand	om			1
1	elitism:	yes				
	tournament size					
1	direction:	min				I
+						-+
I	Settings for jo	b				
+		1 .	11			+
	Command: [./exte					
	Bounds:[bounds. External input:					
	External fit:[i			(
	Total coefficie				TT d d	
					Used random seed	
		runs ve	e og settinbe	VAS		
	Print options:	runs ye	s, ga settings	yes		
- +		runs ye	s, ga settings	yes		
	run: 1 TEST MODE seed:		¥	yes		
	run: 1		¥	yes		
+	run: 1		¥	yes		
L Eval.	run: 1 TEST MODE seed:	148873	¥	yes		
	run: 1 TEST MODE seed: . Best	148873	¥	yes		
100	run: 1 TEST MODE seed: . Best 22.55	148873 fit.	¥	yes		
100 300	run: 1 TEST MODE seed: . Best 22.55 19.07	fit.	¥	yes		
100 300 500	run: 1 TEST MODE seed: . Best 22.55 19.07 7.595	fit. 65 32 89	¥	yes		
100 300	run: 1 TEST MODE seed: . Best 22.55 19.07	fit. 65 32 89	¥	yes		
100 300 500	run: 1 TEST MODE seed: . Best 22.55 19.07 7.595	fit. 65 32 89	¥	yes		
100 300 500 500	run: 1 TEST MODE seed: . Best 22.55 19.07 7.595	fit. 65 32 89 89	2015			
100 300 500 500	run: 1 TEST MODE seed: . Best 22.55 19.07 7.595 7.595	fit. 65 32 89 89	¥			
100 300 500 500 # # #Res	run: 1 TEST MODE seed: . Best 22.55 19.07 7.595 7.595	fit. 65 32 89 89	2015			
100 300 500 500	run: 1 TEST MODE seed: . Best 22.55 19.07 7.595 7.595	fit. 65 32 89 89	2015			
100 300 500 500 # # #Res	run: 1 TEST MODE seed: . Best 22.55 19.07 7.595 7.595	fit. 65 32 89 89	2015			
100 300 500 500 # # #Res	run: 1 TEST MODE seed: . Best 22.55 19.07 7.595 7.595	fit. 65 32 89 89	2015			
100 300 500 500 # #Res # NTER	run: 1 TEST MODE seed: 22.55 19.07 7.595 7.595 ults 24CTION TYPE 1	fit. 65 32 89 89	2015			
100 300 500 500 # #Res # NTER	run: 1 TEST MODE seed: . Best 22.55 19.07 7.595 7.595	148873 fit. 65 32 89 89 89	2015			
100 300 500 500 # #Res # NTER	un: 1 TEST MODE seed: 22.55 19.07 7.595 vilts RACTION TYPE 1 -Xe(14) Coefficients:	148873 fit. 65 32 89 89 H	2015			
100 300 500 500 # #Res # NTER	run: 1 TEST MODE seed: 22.55 19.07 7.595 7.595 ults RACTION TYPE 1 -Xe(14) Coefficients: 1 A +7 2 B	148873 fit. 65 32 89 89 ₩ ₩ 4 	2015 ere begins res			
100 300 500 500 # #Res # NTER	run: 1 TEST MODE seed: 22.55 19.07 7.595 7.595 ults RACTION TYPE 1 -Xe(14) Coefficients: 1 A +7 2 B 3 C	148873 fit. 665 32 89 89 ₩ ₩ 4 74540.02 +5.00 -845.72	2015 ere begins res 17736325 00000000 600791565			
100 300 500 500 # # Res # NTER	run: 1 TEST MODE seed: 22.55 19.07 7.595 7.595 ults RACTION TYPE 1 -Xe(14) Coefficients: 1 A +7 2 B	148873 fit. 665 32 89 89 ₩ ₩ 4 74540.02 +5.00 -845.72	2015 ere begins res	ults		
100 300 500 500 # #Res # INTER C(1)-	run: 1 TEST MODE seed: 22.55 19.07 7.595 7.595 ults RACTION TYPE 1 -Xe(14) Coefficients: 1 A +7 2 B 3 C 4 D	148873 fit. 665 32 89 89 ₩ ₩ 4 74540.02 +5.00 -845.72	2015 ere begins res 17736325 00000000 600791565	ults	tion	
100 300 500 500 # #Res # INTER C(1)-	run: 1 TEST MODE seed: 22.55 19.07 7.595 7.595 ults RACTION TYPE 1 -Xe(14) Coefficients: 1 A +7 2 B 3 C	148873 fit. 665 32 89 89 ₩ ₩ 4 74540.02 +5.00 -845.72	2015 ere begins res 17736325 00000000 600791565	ults	tion	
100 300 500 500 # #Res: # INTER C(1)-	run: 1 TEST MODE seed: 22.55 19.07 7.595 7.595 ults ACTION TYPE 1 -Xe(14) Coefficients: 1 A +7 2 B 3 C 4 D XACTION TYPE 2	148873 fit. 665 32 89 89 ₩ ₩ 4 74540.02 +5.00 -845.72	2015 ere begins res 17736325 00000000 600791565	ults	tion	
100 300 500 500 # #Res: # INTER C(1)-	run: 1 TEST MODE seed: 22:55 19:07 7:595 7:595 2	148873 fit. 65 32 89 89 89 ₩ # 74540.02 +5.00 -845.72 +8.00	2015 ere begins res 17736325 00000000 600791565	ults	tion	
100 300 500 500 # #Res: # INTER C(1)-	run: 1 TEST MODE seed: 22.55 19.07 7.595 vilts RACTION TYPE 1 -Xe(14) Coefficients: 1 A +7 2 B 3 C 4 D RACTION TYPE 2 -Xe(14) Coefficients:	148873 fit. 665 32 89 89 ₩ ₩ 74540.02 +5.00 -845.72 +8.00	2015 ere begins res 17736325 00000000 60791565 00000000	ults	etion	
100 300 500 500 # #Res: # INTER C(1)-	run: 1 TEST MODE seed: 22.55 19.07 7.595 7.595 ults ACTION TYPE 1 -Xe(14) Coefficients: 1 A +7 2 B 3 C 4 D XACTION TYPE 2 -Xe(14) Coefficients: 5 A +54	148873 fit. 665 32 89 89 H 4 - 74540.02 +5.00 - 845.72 +8.00 - 845.72 +8.00 - 845.72 +8.00 - 85.00 - 8	2015 ere begins res 17736325 00000000 85643021	ults	:tion	
100 300 500 500 # #Res: # INTER C(1)-	run: 1 TEST MODE seed: 22:55 19:07 7:595 7:595 ults 24CTION TYPE 1 -Xe(14) Coefficients: 1 A +7 2 B 3 C 4 D 24CTION TYPE 2 -Xe(14) Coefficients: 5 A +54 6 B	148873 fit. 65 32 89 89 ₩ 4 4 4 4 4 4 4 4 4 4 4 4 4	2015 2015 2015 2015 2015 2015 200000000	ults	etion	
100 300 500 500 # #Res: # INTER C(1)-	run: 1 TEST MODE seed: 22.55 19.07 7.595 7.595 ults ACTION TYPE 1 -Xe(14) Coefficients: 1 A +7 2 B 3 C 4 D XACTION TYPE 2 -Xe(14) Coefficients: 5 A +54	148873 fit. 665 32 89 89 H 4 	2015 ere begins res 17736325 00000000 85643021	ults	etion	

File 9.9: Uracil example output: output.txt (iii)

The calculations employ random numbers, so if you take the same seed used in a given run, you will reproduce the whole output. You must activate the option **print runs** to view it in output. In any case, you can retrieve the seed in the file *stats.txt*. The details are in Section 15.2 and it is useful for testing and debugging purposes. Each interaction with the coefficients found are printed. This is the information saved in the file *best.txt*.

INTERACTION TYPE 3		
C(3)–Xe(14)	_	
Coefficients:		
	1043.7557968706	
10 B	+10.0000000000	
	-1155.6351484105	
12 D	+8.0000000000	
INTERACTION TYPE 4	_	
N(4)-Xe(14)		
Coefficients:	0400 0000404005	
13 A +15 14 B	8499.3083434265 +5.0000000000	
	-1350.4319505465	
16 D	+8.0000000000	
INTERACTION TYPE 5		
C(5)–Xe(14)	-	
Coefficients:		
17 A +43	0213.6165002815	
18 B		
	-465.2443965131 +4.000000000000000000000000000000000000	
	. 1.00000000000000000000000000000000000	
INTERACTION TYPE 6	_	
C(6)-Xe(14) Coefficients:		
	6522.1955712938	
21 A +2 22 B	+4.0000000000	
23 C	-771.4668786474	
24 D	+6.0000000000	
INTERACTION TYPE 7		
O(7)–Xe(14)	-	
Coefficients:		
	7791.4463235690	
26 B	+3.0000000000	
27 C 28 D	-868.7300231100 +4.0000000000	
INTERACTION TYPE 8		
	_	
O(8)-Xe(14) Coefficients:		
	6941.4962879005	
30 B	+5.0000000000	
31 C –	-1262.0250218901	
32 D	+8.000000000	
INTERACTION TYPE 9		
	-	
Li(9)-Xe(14)		
Coefficients:		
33 A +88 34 B	2006.9378573116 +5.0000000000	
	-1270.6122879899	
36 D	F 0000000000	
INTERACTION TYPE 10		
H(10)–Xe(14)	-	
Coefficients:		
	2068.4610048971	
38 B 39 C -	+8.0000000000	
40 D	+7.0000000000	
INTERACTION TYPE 11		
	-	
H(11)-Xe(14) Coefficients:		
	5814.6940483026	
42 B	+10.0000000000	
	-324.8565324163	
44 D	+5.0000000000	
INTERACTION TYPE 12		
	-	

File 9.10: Uracil example output: output.txt (iv)

H(12)–Xe(14)		
Coefficier	its:	
45 A	+52853.6256781471	
46 B	+7.0000000000	
47 C	-1500.000000000	
48 D	+7.0000000000	

Finally, an objective function is calculated for each geometry:

$$\mathbf{Difference} = \frac{(\mathbf{Calculated} - \mathbf{Energy})}{\mathbf{Energy}} * 100$$

Where *Calculated* is the energy calculated using the *best.txt* coefficients, and the geometry energy *–Energy–* from the file *energies.txt*.

File 9.11: Uracil example output: output.txt (v)

H(13)-Xe((14)				
	Coefficients:				
		0.8248932150			
	50 B +9	0.0000000000			
	51 C -78	7.5269561135			
	52 D +7	7.0000000000			
#					
#Evaluati	ion				
#					
#Geometry		Calculated	Difference	Weight	
#=======					
1	-0.006436000000	-0.011050577330	+71.70 %	+1.00	
2	-0.012603000000	-0.017997557493	+42.80 %	+1.00	
3	-0.024660000000	-0.031867370776	+29.23 %	+1.00	
4	-0.053662000000	-0.063991213263	+19.25 %	+1.00	
5	-0.151027000000	-0.158047898351	+4.65 %	+1.00	
6	-0.208324000000	-0.207739342432	-0.28 %	+1.00	
7	-0.298249000000	-0.279542061446	-6.27 % -13.13 %	+1.00 +1.00	
	-0.443987000000 -0.576097000000	-0.385691828283	-13.13 % -17.79 %		
9 10	-0.576097000000 -0.762092000000	-0.473617455187 -0.586861719042	-17.79% -22.99%	+1.00	
11	-1.031527000000	-0.733570004510	-22.99% -28.89%	+1.00	Geometry fit evalua-
11	-1.431174000000	-0.924749242688	-35.39 %	+1.00	tion
13	-2.022694000000	-1.175614113636	-41.88 %	+1.00	
14	-2.554913000000	-1.386332740552	-45.74 %	+1.00	
14	-3.208230000000	-1.641405665602	-48.84 %	+1.00	
16	-3.966854000000	-1.950496945548	-50.83 %	+1.00	
17	-4.767595000000	-2.321014222875	-51.32 %	+1.00	
18	-5.448579000000	-2.744231792499	-49.63 %	+1.00	
19	-5.645469000000	-2.958529426817	-47.59 %	+1.00	
20	-5.658691000000	-3.149037786327	-44.35 %	+1.00	
21	-5.387761000000	-3.274427021287	-39.22 %	+1.00	
22	-4.692701000000	-3.259569971701	-30.54 %	+1.00	
23	-3.377588000000	-2.971079070471	-12.04 %	+1.00	
24	-1.167944000000	-2.176024998738	+86.31 %	+1.00	
25	+2.322455000000	-0.472650935654	-120.35 %	+1.00	
26	+7.633202000000	+2.825651217629	-62.98 %	+1.00	
27	+15.516838000000	+8.883658156418	-42.75 %	+1.00	
28	+27.007602000000	+19.66520595755	8 -27.19 %	+1.00	
29	+66.979582000000	+70.78921081461	1 +5.69 %	+1.00	
30	+146.05614400000	0 +218.641328594	868 +49.70 %	+1.00	
31	+297.07201900000	0 +634.044445712	745 +113.43 %	+1.00	

9.3 Examining results

The best individual from the program run is stored in the file *best.txt* – File 9.13–. You must save this file, because it is overwritten in each run, and it is used to load coefficients by some tools. The last line of the file shows the above objective function calculated with the best coefficients. Executing the *fitview* tool in the same folder, it reads the configuration and the *best.txt* file creating some useful graphs. See Section 3.10.

The file best.txt is overwritten in each run

9.3. Examining results

File 9.12: 2body-type-1.plt

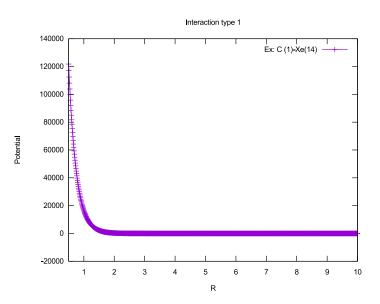
```
set terminal x11
set title "Interaction type 1"
set xrange [0.500000:10.000000]
set xlabel "R"
set ylabel "Potential"
plot "2body-type-1.dat" using 1:2 title "Ex: C (1)-Xe(14)" with linespoints
pause -1
```

Files 9.12 and 9.14 are the **gnuplot** commands and data file, repectivelly, to plot *Potential* vs r for the *interaction type 2* between C(1) and Xe(14), Figure 9.2.

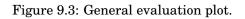
	1
901608.806630330742	
4.000000000000	
-6.430323296743	
5.00000000000	
165595.86 979834671	
7.000000000000	A, B, C, D for interac-
-1138.239454060825	tion type 1, C(1)-Xe(14)
5.000000000000	
565031.244248823496	
5.000000000000	
-215.144199774099	
8.00000000000	
462307.829517660779	
8.00000000000	
-70.773260147771	
8.00000000000	
662752.755474972306	
2.00000000000	
-311.802009422465	
4.00000000000	
819468.319292194792	
10.00000000000	
-1378.714903828626	
5.000000000000	
702730.873476595385	
6.000000000000	
-1068.294837888685	
8.000000000000	
270196.896241575596	
9.000000000000	
-1426.856074983300	
5.000000000000	
868175.125098152435 5.000000000000	
-1499.764070025773	
-1499.764070025773	
321195.104213012499	
9.000000000000	
-293.802737729408	
5.000000000000000000000000000000000000	
3.0000000000000	
-562.671412678537	
5.00000000000	
93914.834234193142	
6.00000000000	
-9.016924216977	
5.00000000000	
520130.035980527289	Result from evaluate
2.00000000000	this coefficients set
-886.907942598062	
8.00000000000	
Fitness: 4.53655	

File 9.13: Uracil example best.txt

In File 9.12 you can change, for example, set terminal x11 with set terminal svg and add a line with set output "plot.svg". Next, you can run:


```
$ gnuplot 2body-type-1.plt
```

to obtain a *svg graphic file* named *plot.svg* like Figure 9.2.


File 9.14: 2body-type-1.dat

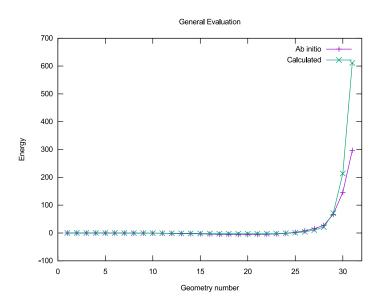
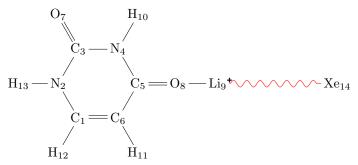

#				
#INTERAC	TION TYPE 1			
#				
# C(1)-X	le(14)			
#	Coefficients:			
#	1 A +90	1608.80663	03307	
#	2 B	+4.00000	00000	
#	3 C	-6.43032		
#	4 D	+5.00000		
#	12	10100000		
#		r	V	
п	10.50	0000000	+121813.7128684444	
		00000000	+117048.6583011130	
	+0.52	00000000	+112469.0513077077	
	+0.53	00000000	+108067.8097677045	
	+0.54	00000000	+103838.1009140337	
	+0.55	00000000	+99773.3361867638	
	+0.56	00000000	+95867.1654688832	
		00000000	+92113.4708844208	
[]	10101			
1]				

Figure 9.2: Interaction type 1 plot.

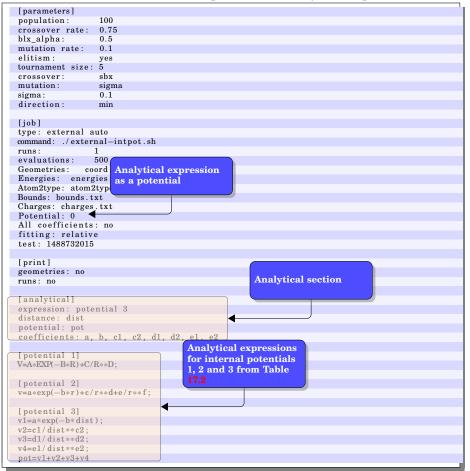
One of the plots produced by **fitview** is the evaluation of the fit, that can help you to adjust the geometry weights, Figure 9.3.



User designed analytical expressions

The only way for errors to occur in a program is by being put there by the author. No other mechanisms are known. Programs can't acquire bugs by sitting around with other buggy programs.

Harlan D. Mills



Instead of using a potential function already implemented in **GAFit**, the user can type manually a new *analytical expression* directly in the *job.txt* file. We shall use the previous example, **Xe** + [**Li**(**Uracil**)]⁺ system, taken from [Roberto Rodriguez-Fernandez, Saulo A. Vazquez, and Emilio Martinez-Nunez. "Collision-induced dissociation mechanisms of [Li(uracil)]+". In: *Phys. Chem. Chem. Phys.* 15 (20 2013), pp. 7628–7637. DOI: 10.1039/C3CP50564B].

In this example, we fit an analytical expression to the *interaction ener*gies between Xe and the [Li(Uracil)]⁺complex, computed by *ab initio* calculations. Next, it is shown how to use this feature using the previous example.

10.1 Preparing input files

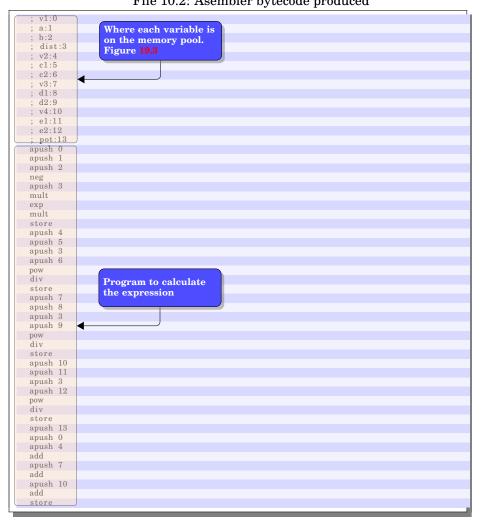
The files for this example are in the folder *intermolecular/analytical*. The input files are the same than the previous one, except for the *job.txt* file $-File 10.1^{1}$ - which is the unique file to modify.

File 10.1: Uracil example with an analytical expression

Potential type, according to Table 17.2, must be changed to **0**. Next we have to write a new section, **[analytical]**, with some configuration data:

- **expression:** This is the expression employed for the potential. In this example it is configured as *potential 3*.
- **distance:** Name of the variable distance -r in the formula from Table 17.2–. *dist* in the example.
- potential: Name of the variable potential energy. In the example pot.
- **coefficients:** The names of the coefficients to be optimized. In the example *a*, *b*, *c1*, *c2*, *d1*, *d2*, *e1* and *e2*.

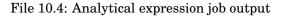
¹As in previous section, you safely can delete the entire [parameters] section.


If you want to use other potential like **potential 1** or **potential 2** you must change the whole **[analytical]** section accordingly.

You can test the *job.txt* file using **ufpu** –section 20.3– and type some values to **distance** and **coefficients** and check the calculated **potential**.

```
$ ufpu
uFpu v0.2 (c)GAFit toolkit - 2013
expression name: "potential 3"
potential: pot
distance:
                  dist
coefficients: a, b, c1, c2, d1, d2, e1, e2
Expression found:
              v1 = a*exp(-b*dist);
v2 = c1/dist**c2;
              v3 = d1/dist**d2;
v4 = e1/dist**e2;
              pot = v1 + v2 + v3 + v4
             Variables found in expression: v1 a b dist v2 c1 c2 v3 d1 d2 v4 e1 e2 pot
             Expression code OK
             pot index 13
             dist index 3
             8 coefficients found
INPUT
             distance variable (dist)=1
             coefficient a=1
             coefficient b=1
             coefficient c1=1
             coefficient c2=1
             coefficient d1=1
             coefficient d2=1
             coefficient e1=1
             coefficient e2=1
After run: Memory (total used 27) v1=0.367879 a=1 b=1 dist=1 v2=1 c1=1 c2=1 v3=1 d1=1 d2=1 v4=1 e1=1 e2=1 pot=3.36788
RESULT POTENTIAL:3.367879
Press ^{\prime}\,\text{q}^{\prime}\,/\,\text{INTRO} to quit, another key/INTRO to repeat
```

The bytecode result of compiling the analytical expression is shown in File 10.2.


The resulting *job.txt* is shown in File 10.3 after adjusting the **geome-tries** and **atom2type** files. Also a *bounds.txt* file, with 8 bounds like the one included in the example, must be used.

File 10.2: Asembler bytecode produced

[job]	
type: external auto	
command: ./external-intpot.sh	
geometries: coord.molden	
atom2type: atom2types.txt	
potential: O	Analytical expression
	named section
[analytical]	
coefficients: a,b,c1,c2,d1,d2,e1,e2	
distance: dist	
expression: this is the analytical expres	ssion
potential: pot	
[parameters]	
[parameters]	
[print]	
[print]	Analytical expression
[this is the analytical expression]	
v1=a*exp(-b*dist);	
v2=c1/dist**c2;	
v3=d1/dist**d2;	
v4=e1/dist**e2;	
pot=v1+v2+v3+v4	

File 10.3: Analytical expression job

[]
INTERMOLECULAR MODULE
Coordinates : [coord . molden]
Energies: [energies.txt]
Atom2type:[atom2types.txt]
Bounds: [bounds.txt]
Charges:[charges.txt]
Potential read: Analytical expression
All coefficients: no, Read and repeat subset
Interactions types: inter
Fitting: relative
PRINT OPTIONS
geometries no
analytical yes
Analytical expression
expression name: "potential 3"
potential: pot
dist
coefficients: a, b, c1, c2, d1, d2, e1, e2
Expression found:
$v1 = a \exp(-b \cdot dist)$
v2 = c1/dist ** c2;
$v_3 = d1/dist^{**}d_2;$
v4 = e1/dist **e2;
pot = v1 + v2 + v3 + v4
Variables found in expression: v1 a b dist v2 c1 c2 v3 d1 d2 v4 e1 e2 pot
Expression code OK
pot index 13
dist index 3
8 coefficients found
[]

10.2 Running and examining results

The output is similar to the previous one –section 9–, except for the potential. Here we use the number 3 from Table 17.2 but coded as an *analytical expression*.

11

External Interface

The nice thing about standards is that you have so many to choose from.

Andrew S. Tanenbaum

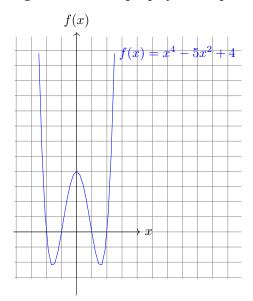
Before examining the MOPAC interface, we are going to study a simple case: fitting a polynomial to a set of values building a new module to interface with.

11.1 Input files

Whe have some (x, f(x)) pair values shown in Table 11.1 to fit to a polynomial of fifth degree. These value pairs are in the input File 11.1.

File 11.1: external.values fi	le
-------------------------------	----

-3 40			
$ \begin{array}{r} -3 & 40 \\ -2 & 0 \end{array} $			
$-1 \ 0$			
0 4			
1 0			
$2 \ 0$			
3 40			


Obviously, the data fits to any polynomial who has roots at -2, -1, 1 and 2 like the one shown in Figure 11.1. Also, we need a *bounds.txt* file to fix upper and lower limits as the included example in File 11.2. In this case, we want integer values, so the righmost column is set to 0.

File 11.2: bo	ounds.txt file
---------------	----------------

EXT TEXT TEXT	TEXT			
-10.	10.	0		
-10.	10.0	0		
-10.	10.	0		
-10.	10.0	0		
-10.	10.	0		

x	f(x)
-3	40
-2	0
-1	0
0	4
1	0
2	0
3	40

Figure 11.1: Example polynomial plot

An example is provided in File 11.4. This code inputs the coefficients values provided by **GAFit** and the external known values –like the Table 11.1, File 11.1– to calculate a fit to a generic polynomial of degree n:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

The given test code supports both *external* and *external bulk* options (Section 21.1): It can read to evaluate a set of coefficients –a individual– or a whole population set of coefficients. To test each one change in File 11.3 –the *job.txt* file– the type of job.

[job] runs:	1	External command	Number of coeffients
evaluations :	50000		
type:	external bulk		
command:)	
coefficients:	5		
external input:			
external fit:	external.fit		
bounds:	bounds.txt		
[print]			
print runs: yes		n to name coeffi-	
	cients		
[coefficient na	mes]		
first			
second	4		
third			
fourth			
fifth			

File 11.3: External example job.txt: fitting a polynomial

In the configuration file -job.txt, File 11.3– is included a [coefficients names] section to name each coefficient with a user provided string. So, a_0 becomes *first*, a_1 becomes *second* and so on.

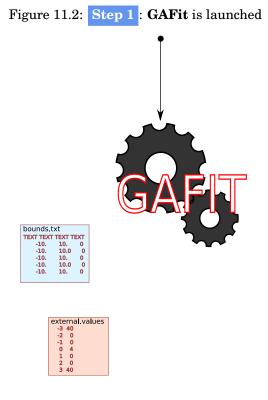
The function to adjust is defined **double func(double x, double a[], int n**) at lines 13-14, File 11.4. In this case is a polynomial of degree n. You can use this code to adjust a different function.

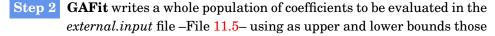
File 11.4: external.c

```
1 /*
2 (c)GAFit toolkit $Id: external.c 378 2019-12-04 17:52:09Z ro $
3 */
4 #if HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 #include <stdio.h>
8 #include <math.h>
9 #include <stdlib.h>
10
11 #define MAXLINE 100
12
13 double
14 func (double x, double a[], int n)
15 {
    double ret = 0;
16
17
     int i;
    for (i = 0; i < n; i++)
18
       ret += a[i] * pow (x, (double) i);
19
    return ret;
20
21 }
22
23 int
24 main (void)
25 {
    char line [MAXLINE + 1];
26
     double *coef = NULL;
27
28
    double *valuesx = NULL, *valuesy = NULL;
    double fit , number0, number1, tmp, div;
29
30
     int i, j, ncoefs, mvalues, tcoefs;
    int first , ok;
31
32
    FILE *f, *out;
33
```

```
34
35
     mvalues = 0;
f = fopen ("external.values", "r");
while (fgets (line, MAXLINE, f) != NULL)
36
37
38
39
       {
          sscanf (line, "%lf%lf", &number0, &number1);
40
          valuesx = (double *) realloc (valuesx, sizeof (double) * (
41
            mvalues + 1);
          valuesy = (double *) realloc (valuesy, sizeof (double) * (
42
            mvalues + 1));
          valuesx[mvalues] = number0;
43
44
          valuesy[mvalues] = number1;
45
         mvalues++;
46
       }
     fclose (f);
47
48
     ok = 1;
49
50
     first = 1;
     ncoefs = 0;
51
     out = fopen ("external.fit", "w");
f = fopen ("external.input", "r");
52
53
     if(!f)
54
55
56
       printf("no_file_external.input\n");
       exit(EXIT_FAILURE);
57
58
     while (ok)
59
60
       {
          while (fgets (line, MAXLINE, f) != NULL)
61
62
            {
              char *p = line;
while (*p == '_' ' || *p == '\t')
63
64
65
                p++;
               if (*p == '\r' || *p == '\n')
66
                break;
67
68
               sscanf (line, "%lf", &number0);
69
              ncoefs++;
70
71
               if (first)
72
73
                {
                   coef = (double *) realloc (coef, sizeof (double) *
74
                     (ncoefs));
75
                   tcoefs=ncoefs;
                 }
76
              coef[ncoefs - 1] = number0;
77
78
            }
          if(feof(f))
79
            ok=0;
80
81
          first = 0;
          ncoefs = 0;
82
83
          fit = 0;
84
          for (i = 0; i < mvalues; i++)
85
            {
              tmp = func (valuesx[i], coef, tcoefs);
86
               //check div by zero
87
               if (valuesy[i] == 0)
88
89
                 div = 1;
                                        //use absolute
90
              else
                 div = valuesy[i] * valuesy[i];
                                                           //use relative
91
               fit += (tmp - valuesy[i]) * (tmp - valuesy[i]) / div;
92
```

```
93  }
94
95  fprintf (out, "%lf\n", fit);
96  }
97  fclose (out);
98  fclose (f);
99 }
```

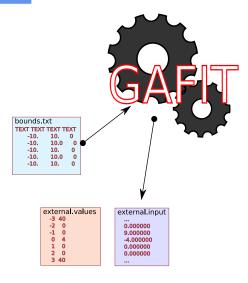

11.2 Running the example and examining results


To create the needed files and run the test you only have to type in the **GAFit**'s examples folder –see 52–:

```
$ cd miscellaneuous/external
$ make external
$ gafit > output.txt
```

Some things happen, e.g. compiling *external.c* source code to produce **external** binary, and the example begins to run. What is on way?

Step 1 GAFit is launched. It finds two input files: *bounds.txt* and *external.values*.



specified in the file bounds.txt –File 11.2–. If the file external.input exists, it is overwritten.

If we want only one coefficients set at a time, the **type** of job must be changed from **external bulk** to **external** in File 11.3.

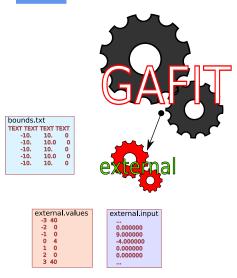

The coefficients must be integers *-bounds.txt* last column set to 1–.

Figure 11.3: Step 2 : GAFit overwrites or creates the *external.input* file.

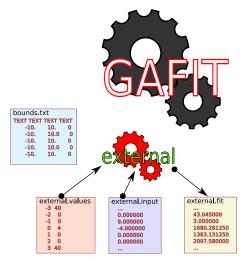

Step 3 GAFit launches the **external** binary.

Figure 11.4: Step 3 : GAFit launches the external binary

external using *external.input* evaluates the *external.values* and overwrites if the file exists, or it creates the *external.fit* file –File 11.6–. Figure 11.5: Step 5 : external using *external.input* evaluates the *external.values* and overwrites or creates the *external.fit* file

Step 5 GAFit reads the *external.fit* file with the results. If minimizing, the lesser best, so a 0, or near it, means a very good fit. I the file shown, File 11.6, the 13^{th} value is worse than 6^{th} .

The n^{th} value, (0, 9, -4, 0, 0), from File 11.5 represents the polynomial:

$$p(x) = 0x^4 + 0x^3 - 4x^2 + 9x + 0$$

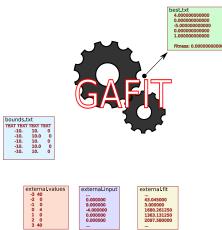
 $\frac{[p(x)-f(x)]^2}{f(x)^2}$ $p(x) = -4x^2 + 9x$ f(x)x-3 40 -63 6.630625 -2 0 -34 1156.000000 -1 0 -13 169.000000 0 0 1.00000 4 0 1 $\mathbf{5}$ 25.00000 $\mathbf{2}$ 0 $\mathbf{2}$ 4.00000 3 40 -9 1.500625 $\frac{f(\overline{x})]^2}{x^2}$ $\sum \frac{|p(\overline{x})|}{|p(\overline{x})|}$ 1363.131250

Table 11.2: n^{th} set of coefficients fit.

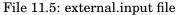
The calculations are shown in Table 11.2 for the n^{th} coefficients set: Files 11.5 and 11.6.

Note that, in the *external.c* program, File 11.4, lines 88-92, we do a trick to avoid dividing by zero: we use a relative fit, but if divisor equals zero, we use 1 for the divisor which in the other hand it is converted in an absolute fit.

Step 6 if **GAFit** finds it in the *external.fit* file, the best fit is overwritten if exists, or creates the *best.txt* file –File 11.7. Note that this file always


Figure 11.6: Step 5 : GAFit reads the *external.fit* file

will be overwritten: If you have some fit to save, copy it out there or rename it.


The values shown represent the polynomial:

$$f(x) = x^4 - 5x^2 + 4$$

Figure 11.7: **Step 6**: if the fit is the best till now, **GAFit** overwrites or creates the *best.txt* file

File 11.6: external.fit file

	evaluation of n^{th} coefficients set	
[]		
1680.261250		
1363.131250	◀	
2097.580000		
[]		

File 11.7: best.txt

best till now coefficients set	
4.00000000000 0.0000000000 -5.00000000000 0.000000000000	fit value of the best co- efficients set
1.000000000000 Fitness: 0.000000000000	

The output of the whole process is sumarized in File 11.8.

Configuring **GAFit** to work with an external program is a complex task. You can begin with this example changing the code and the configuration until it covers all your needs. A good tip is to use the **test** option in the **[job]** section of the *job.txt* file to set always the same *seed* and compare between changes –See 15.2–.

[]		command to run
+	Settings for job	
1	Command:[./external]	
1	Bounds:[bounds.txt]	1
1	External input:[external.input]	
1	External fit:[external.fit]	1
1	Total coefficients: 5 seed for this run	1
1	Print options: runs yes, ga settin	
+		++
	run: 1 TEST MODE seed: 1488732015	I
	TEST MODE seed: 1488732015	
+		
Eval.	Best fit. individuals calculated	
100	10624 and best fit till now	
200	4287	
[]		
800	28	
4900	28	
5000	0	
5000	0 Last best written best.txt	to
# #Resu	14-	
# Kest	Its	
π	1 first +4.0000000000	
	2 second +0.00000000000	
	3 third -5.00000000000	
	4 fourth +0.00000000000	

File 11.8: external.output

More information on this subject on 21.1. To test further this example, we can do some modifications:

- change the number of coefficients to 6
- add a new name to [coefficients names] section
- add a new line to the *bounds.txt* file.

and run it some times.

There are distinct results from each run, because the GA explores all the space limited by the bounds and by the type of coefficients: only integers. Some results are shown in Table 11.3 and plotted in Figure 11.8.

a_0	a_1	a_2	a_3	a_4	a_5	fit ^a
0	0	0	0	0	0	3.0
4	0	-5	0	1	0	0.0
0	4	5	0	0	-1	21.0
0	-8	0	10	0	-2	75.0

Table 11.3: Some results running the example with 6 coefficients.

^a The lesser best.

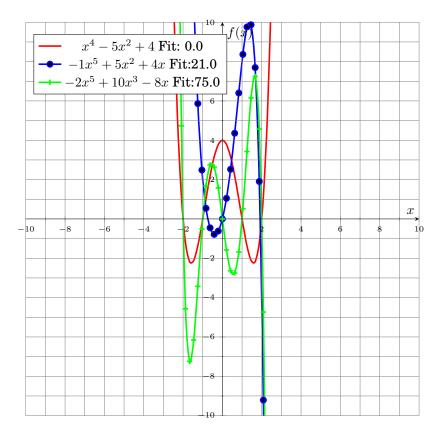


Figure 11.8: Table 11.3 polynomial plots.

12

MOPAC Interface

I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu) for 386(486) AT clones.

Linus Torvalds. 1991

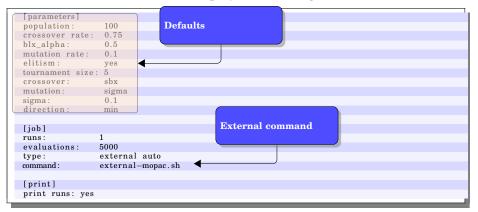
In this Section, a semiempirical Hamiltonian is reparametrized to fit the energetics and also geometries and frequencies for a decomposition channel of vinyl cyanide (VC). The *ab initio* calculations for this system are shown below –taken from [Zahra Homayoon, Saulo A. Vázquez, Roberto Rodríguez-Fernández, and Emilio Martínez-Núñez. "Ab Initio and RRKM Study of the HCN/HNC Elimination Channels from Vinyl Cyanide". In: *The Journal of Physical Chemistry A* 115.6 (2011). PMID: 21261315, pp. 979– 985. DOI: 10.1021/jp109843a]–.

12.1 Prerequisites

You must have installed MOPAC in your system –MOPAC 2009, 2012 or 2016–. You must know where it is installed or which is the value of the MO PAC_LICENSE shell variable, to set correctly **external-mopac.sh** –File 12.6–.

12.2 Input and executable files

The complete interface was explained in the Section 21. To create and run the example you must type:


```
$ cd mopac/mopac
$ tar xvzf mopac.tgz
$ gafit > output.txt
```

Some files are extracted from the compressed data file and the example is run. Check that your environment variable **PATH** contains the folder were the **GAFit**'s executables are installed¹.

Table 12.1: Files in the mopac-example folder after uncompress the *mopac.tgz* file.

File	Туре
bounds.txt	text file
conditions.txt	text file
external-mopac.sh	shell script
job.txt	job configuration
template.coefs	mopac external coefficients
template.mop	mopac job template

File 12.1: External example job.txt: fitting MOPAC coefficients

As shown in File 12.1, the job is declared as **external auto**, so the external scripts and/or binaries must configure the system by themselves.

TEXT TEXT TEXT	TEXT		
-10.	10.	0	
-10.	10.0	0	
-10.	10.	0	
-20.	20.0	0	
-100.	100.	0	
-100.	100.	0	
-100.	100.0	0	
-10.	10.	0	
-10.	10.0	0	
-10.	10.	0	
-10.	10.	0	
-20.	20.0	0	
-20.	20.	0	
-20.	20.0	0	
-20.	20.	0	
-10.	10.	0	

¹default value: \$HOME/bin

The objective is to obtain a suitable combination of coefficients, File 12.3, to satisfy the constrains declared in File 12.5 using the MOPAC 2009 task shown in File 12.4 where the @ symbol will be replaced by the name of a copy of File 12.3 where the coefficients are generated by **GAFit** between some limits expressed in the File 12.2.

Note that these randomly generated coefficients are prone to err and could crash MOPAC.

BETAS H	-6.17
н	1.188078
ALP H	2.882324
GSS H	12.848
USS C	-52.028658
UPP C	-39.614239
BETAS C	-15.715783
BETAP C	-7.719283
ZS C	1.808665
ZP C	1.685116
ALP C	2.648274
GSS C	12.23
GSP C	11.47
GPP C	11.08
GP2 C	9.84
HSP C	2.43

File 12.3: MOPAC 2009 coefficients to fit. template.coefs file

Here, File 12.3 only a small set of coefficients to fit. The whole coefficients list and their default values can be obtained from the MOPAC source.

The interface utilities count the number of coefficients to fit and configure **GAFit** accordingly as shown in Figure 21.2 and explained in section 21.4. Here, the File 12.7 is used to pass to **GAFit** the configuration.

									Firs	t ca	lculatio	n	
AM1	precise exter	nal=@	geo—ok	nosyn	1	•			_)	
H C	0.0000000 1.0985214			00000		0.000000		1		0	0	0.1275	
C	1.3341683		123.19			0.0000000		1		0	0	-0.1565	
Н	1.0987950		115.32			9.992911						270	
H	1.1053305		122.16			9.994475		Sec	ond	calc	ulation	514	
С	1.4193357	6 +1	114.52	08739	+1 17	9.997750	8 +1					114	
N	1.1639960	9 +1	179.11	28557	+1	1.2752342	2 +1	6		3	5	-0.0387	
	13/51			c									
oldge	eo AM1 precis	e exte	ernal=@	Iorce	e geo-ol	c nosym	•						
AM1	precise ts ex	terna	l=@ geo	–ok no	osym						calculat		
	-								10	lira	calculat	10 n	
С	0.000000 0		00000		0.00000		0	0	0				
C	1.310566 1		00000	~ ~	0.00000		1	0	0	◀—			
C	2.179061 1		32782		0.00000		2	-	0	•			
N	1.160916 1		93759	-	0.000000		3	2	1				
H	1.076805 1 1.084538 1		72862 88127		0.000000		1	2	3				
Н	1.208813 1		31474		0.000000		2	2	3 4				

File 12.4: MOPAC 2009 task. template.mop file

In File 12.4 we have three calculations:

• The first one, an Austin Model 1 (AM1) geometry optimization of the vinyl cyanide. Figure 12.1.

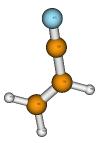
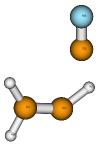



Figure 12.1: Vinyl cyanide drawn using the coordinates of the first calculation (optimization of the minimum energy structure).

- The second one, using the optimized geometry from first one (keyword **oldgeo**), it calculates vibrational frequencies (keyword **force**)
- The third one, a transition state search (keyword ts). Figure 12.2.

Figure 12.2: Three-centered transition state drawn using the coordinates of the last calculation.

The number of calculations presents in the task are detected parsing **MOPAC** output. Some semiempirical parameters are taken at run time by use of **EXTERNAL=@**, where **GAFit** will replace all **@** with the name of a file which contains the generated parameters to fit as explained before. For those parameters not in file, **MOPAC** take its defaults.

File 12.5: Constrains: conditions.txt file

delt 3	1 1	00.6	0.1					
frequency	2	15	3271.0	1e-4				
distance	3	1	7	3.700309096	100.0			
penalty 1e	10							

Constrains are explained in Section 21.6. Here, we have:

- **delt 3 1 100.6 0.1** Difference of heat of formation between calculation 3 (optimized transition state) and calculation 1 (optimized geometry) must be 100.6 kcal/mol and it has a weight of 0.1.
- frequency 2 15 3271.0 1e-4 Vibrational frequency number 15, obtained from calculation 2, must be 3271.0 and it has a weight of 0.0001.
- distance 3 1 7 3.700309096 100.0 Distance in calculation 3 between atom 1 and atom 7 must be 3.700309096 and having a weight of 100.0.

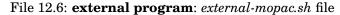
penalty 1e10 If any of the calculations in the template fails, it be assigned a penalty of 10.000.000.000.

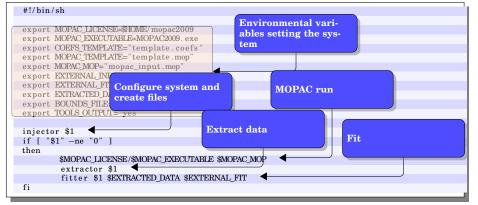
Each set of semiempirical parameters is evaluated taking into account **MOPAC** output with:

$$\mathbf{fit} = \begin{cases} if \\ calculation \\ is \\ done: \end{cases} \begin{pmatrix} [100.6 - (\mathbf{HEAT}_{[1st \ calculation]} - \mathbf{HEAT}_{[3rd \ calculation]})]^2 * 0.1 \\ + \\ [3271.0 - \mathbf{FREQUENCY}_{[number 15 \ from 2nd \ calculation]}]^2 * 1e^{-4} \\ + \\ [3.700309096 - \mathbf{DISTANCE}_{[atoms 3-1 \ from 3rd \ calculation]}]^2 * 100. \end{cases}$$

(if calculation fails: 1e10

GAFit shall run to minimize the fit.


12.3 Running the example and examining results


The file *external-mopac.sh* performs all the above operations, as shown in File 12.1.

To run the example, type:

\$ gafit > output.txt

The external program provided is shown in File 12.6. The operation mode is similar but slightly more complicated than 11. These are the steps:

Step 1 GAFit runs the external program to configure the system as:

external-mopac.sh 0

A file with the configuration is generated by running **injector 0** in turn. This file is shown in File 12.7. All the options are taken from the environment variables set in File 12.6.

File 12.7: external auto: response file

[job]	
type: external	
coefficients: 16	
external input: mopac.input	
external fit: mopac.fit	
bounds: bounds.txt	
[coefficient names]	
BETAS H	
ZS H	
ALP H	
GSS H	
USS C	
UPP C	
BETAS C	
BETAP C	
ZS C	
ZP C	
ALP C	
GSS C	
GSP C	
GPP C	
GP2 C	
HSP C	

- Step 2 GAFit using the information from File 12.7 configures itself.
- **Step 3 GAFit** creates a whole population of individuals. Each individual is a coefficient set.
- Step 4 **GAFit** writes the file *mopac.input* with one set of coefficients –or a whole population, depending upon configuration–. File 12.8.

3.963742	
4.707052	
8.613357	
-13.268145	
-30.000657	
-74.414557	
-22.103403	
-4.673270	
4.940829	
-1.073867	
2.199698	
-14.336436	
-8.429824	
-3.522071	
-10.090874	
-8.412029	

File 12.8: mopac.input file

Step 5 GAFit launches the external program with one parameter: the number of coefficients.

external-mopac.sh 16

Step 6	external-mopac.sh launches injector 16 which create the needed
	files to run the MOPAC 2009 task:

- *mopac_input.mop*, a copy of File 12.4 where the @ is replaced to point the file below –File 12.8–.
- a copy of File 12.8.
- Step 7 external-mopac.sh launches MOPAC 2009 on *mopac_input.mop*, as input file, running the task with *mopac_input.out* as output: File 12.9, where near most the lines are omitted and the three individual task are shown.

[...] ** ** MOPAC2009 ** ** ** [...] AM1 precise external=A geo-ok nosym Sheep #A# ATOM CHEMICAL BOND LENGTH BOND ANGLE TWIST ANGLE NUMBER (ANGSTROMS) (DEGREES) SYMBOL (DEGREES) NA: I 0.00000000 NC:NB:NA: I 0.0000000 (I) NB:NA: I NA NB NC 0.0000000 Н $\frac{1}{2}$ 1 0 C 1.09852142* 0.0000000 0.0000000 0 [...] TOTAL CPU TIME · 0.08 SECONDS == MOPAC DONE == [...] oldgeo AM1 precise external=A force geo-ok nosym [...] TOTAL CPU TIME: 0.16 SECONDS == MOPAC DONE == [...] AM1 precise ts external=A geo-ok nosym [...] TOTAL CPU TIME: 0.24 SECONDS == MOPAC DONE ==

File 12.9: *mopac_input.out* file

Step 8 **external-mopac.sh** launches **extractor** which extracts data from the mopac 2009 output *-mopac_input.out*- writing it to *extracted.data*, File 12.10.

File	12.10:	extracted.data file	

0 0 6	
3	
0 0 0	
-285.89460	
0 0 1	
-1196.18301	
0 0 2	
7	
0 0 3	
1 H 0.0000 0.0000 0.0000	
0 0 3	
2 C 7.5565 0.0000 0.0000	
0 0 3	
[]	

The structure is described in Section 21.5.

external-mopac.sh launches fitter which using the extracted.data file evaluate the coefficients -File 12.11- writing the result to mopac.fit -File 12.12-.

100.5999999999999999 calc= 140.22725000000014 \$0.100000000000001 cont= 1.5 ref= DELTA we=) FREQUENCY calc= we=) DISTANCE we=

Step 10 external-mopac.sh finishes, and control returns to GAFit which apply the *mopac.fit* values to genetic selection.

Step 11 GAFit runs steps from Step 4 to here for each coefficient set to evaluate.

Step 12 if GAFit does not meet a condition to stop, it jumps to Step 3.

A reduced output example is shown in File 12.13. At the end, there are the best coefficients set, which also can be found in the file *best.txt*.

A trick to evaluate the *best.txt* again and examine the fitting details is to copy best.txt over mopac.input and run the external script external*mopac.sh* with **1** as its argument as shown below:

<pre>\$ cp best.txt mopac.input</pre>			
<pre>\$./external-mopac.sh 1</pre>			
extractor correct/total:1	/1		
DELTA calc=	22.54513000005884	ref=	100.599999999999999
we= 0.1000000000000000	cont= 6.02010474994	563588E	-002
FREQUENCY calc=	2117.2900000000000	ref=	3271.0000000000000
we= 1.000000000000005E	-004 cont= 1.24403393046	421793E	-005
DISTANCE calc=	3.6747770408556764	ref=	3.700309095999998
we= 100.0000000000000	cont= 4.760971053	0174802	9E-003
individual	1 fit= 6.49744588917784	832E-00	2
\$			

Don't forget to set TOOLS OUTPUT to "yes"

To see this output you need to

set the environmental variable TOOLS_OUTPUT to "yes"

		*			
[]					
+			+		
l Settings for job					
	Command:[./external-mopac.sh]				
Bounds: [bounds.txt]					
		it:[mopac2009.input]	Ì		
		[mopac2009.fit]	1		
	otal coeffic		1		
I Pi	Print options: runs yes, ga settings no				
+			+		
	in: 1	J. 1400700015	1		
1 11	LST MODE see	d: 1488732015	1		
1			T		
Eval.	Bes	st fit.			
[]					
100	608	3.43			
[]					
	or correct/t / cont= 10	otal:0/1 000000000.000000			
indivi		1 fit= 1000000000000000000000000000000000000			
[]	duai	1 11t= 100000000000000000000000000000000			
	or correct/t	otal·1/1			
DELTA		alc= 1434.4099399999996 ref= 100.599999999999999	we=	2	
(0.100000000	00000001 cont= 177904.89560428029			
FREQUEN	VCY ca	alc= 781.64999999999998 ref= 3271.00000000000	we=	2	
		0000000E-004 cont= 619.68634224999994			
DISTANC		alc= 3.7135732432381094 ref= 3.7003090959999998	we=	2	
	100.0000000				
indivi []	dual	1 fit= 178524.59954029048			
500	608	3.4			
[]	000	5.1			
#					
#Results	i				
#	DETLAC II	. 0 101000046000			
1 2	BETAS H ZS H	+8.101808046038 +7.087829763576			
2	ALP H	+5.154836427027			
4	GSS H	-5.328341920547			
5	USS C	+18.998979138361			
6	UPP C	+46.181250338527			
7	BETAS C	-31.725560376293			
8	BETAP C	-1.149324435345			
9	ZS C	+3.304215163600			
10	ZP C	-6.055745378163			
11	ALP C	+1.087429221295			
12 13	GSS C GSP C	-5.451587242242			
13	GSP C GPP C	+0.110110780275 +10.631884089965			
14	GPP C GP2 C	+10.031884089965 +10.075900047122			
15	HSP C	-8.789173820345			
10	1.001 0				

File 12.13: GAFit output

Giving the Linus Torvalds Award to the Free Software Foundation is a bit like giving the Han Solo Award to the Rebel Fleet.

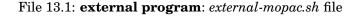
Richard Stallman

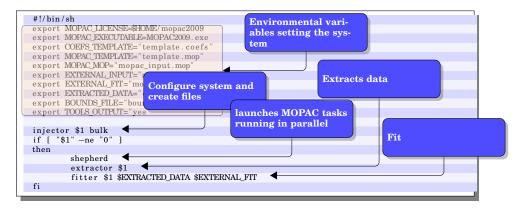
This example is the same as the Section 12, so we shall only show the differences.

13.1 Input and executable files

The complete enhanced interface was explained in the Section 22. To create and run the example you must type:

\$ cd mopac/shepherd \$ tar xvzf mopac-shepherd.tgz \$ gafit > output.txt


After this, the files created are shown in Table 13.1.


Checking files against the previous section example, you figure out that the *external-mopac.sh* file -13.1- is slighty different:

• the line "injector \$1" is changed to "injector \$1 bulk". As stated in 21.4, the option bulk brings the system to an *external bulk* configuration.

File	Туре	Provided by
bounds.txt	text file	example
conditions.txt	text file	example
external-mopac2009.sh	shell script	example
job.txt	job configuration	example
template.coefs	mopac2009 external coefficients	example
template.mop	mopac2009 job template	example

Table 13.1: Files in the shepherd-example folder.

Here –See Section 15.2– a whole population of coefficient sets are passed from **GAFit**– Step 4 in page 92–.

• the line "**\$MOPAC_LICENSE**/**\$MOPAC_EXECUTABLE \$MOPA C_MOP**" is replaced by "**shepherd**" only.

13.2 Running the example

The big difference with Section 12 is Step 7 where **shepherd** launches and controls MOPAC 2009 tasks running in parallel feeding them with one or various coefficient sets. The time spent processing each population is used to calculate the optimal number of concurrent tasks which varies around some optimal one.

To see the output shown in File 13.2, the environmental variable **TOO LS_OUTPUT** must be set to **yes** as in File 13.1.

[]						+	
Se	ettings for	job				I	
Co	mmand : [./ex	(ternal-mopac.sh)					
	unds : [bound					1	
		it:[mopac2009.input	;]			1	
	cternal fit otal coeffic		m of eight				
	int options	a: runs parallel M	OPAC task	(TD):			
		to process	this popula-	Time spent	pulation by		pulation is efficient set
	n: 1	tion		eight paral			vield corre
TE	ST MODE see	d: 1488732015		Cigne para	ICI task	sults	
hepherd	#flocks:8	4)			Juito	
		me:31.718445 🛛 🗲			Coefficie	nt set witl	h
	r correct/f	total:6/100			correct r	esults. Fit	t:
DELTA	0.1	alc= -6301.0098500	000004	ref= 100.59	aaaa 4099022.6	6044319756	6
	0.100000000			8671617033	0000		
FREQUEN		alc= 1598.5699999			0000000000000	we=	2
		00000000E-004 cont		049000003	•		
DISTANC		alc= 6.3118891919			090959999998	we=	2
indivi	100.0000000 dual		1 = 682.03505 99022.60443197	978233693			
DELTA	cal				999999999999	we=	
¢۵	.1000000000			787786633			
FREQUEN		alc= 1510.0400000			0000000000000	we=	2
ç	.1.000000000	00000000E-004 cont					
				21600000			
DISTANC	E ca	alc= 3.8634768579	999998	ref= 3. Cor	efficient set fa	iled	2
DISTANC	E ca	alc= 3.8634768579 00000000 cont	999998 t= 2.6623718	ref= 3. 556088655 Coe	efficient set fa	iled	2
DISTANC	E ca	alc= 3.8634768579 00000000 cont	999998	ref= 3. 556088655 Coe	efficient set fa	iled	2
DISTANC c indivio <u>PENALTY</u>	E ca (100.0000000 dual (cont= 10	alc= 3.8634768579 0000000 cont 41 fit= 996	9999998 t= 2.6623718 54201.93916267	ref= 3 55608865 90	efficient set fa	iled	2
DISTANC indivio [] PENALTY indivio	E ca (100.0000000 dual (cont= 10	alc= 3.8634768579 0000000 cont 41 fit= 996	999998 t= 2.6623718	ref= 3 55608865 90	efficient set fa	iled	2
DISTANC indivio [] PENALTY indivio []	E ca 100.000000 dual cont= 10 dual	alc= 3.8634768579 0000000 cont 41 fit= 996	9999998 t= 2.6623718 54201.93916267	ref= 3 55608865 90	efficient set fa	iled	2
DISTANC (indivio PENALTY indivio [] Eval.	E ca 100.0000000 dual <u>cont= 10</u> dual Bea	alc= 3.8634768579 0000000 cont 41 fit= 996 0000000000.000000 23 fit= 100 st fit.	9999998 t= 2.6623718 54201.93916267	ref= 3 55608865 90	fficient set fa	iled	
DISTANC in divid PENALTY in divid [] Eval. 100	E ca 100.0000000 dual <u>cont= 10</u> dual Bea	alc= 3.8634768579 0000000 cont 41 fit= 996 0000000000.000000 23 fit= 100	9999998 t= 2.6623718 54201.93916267	ref= 3 55608865 90	fficient set fa	iled	
DISTANC in divid PENALTY in divid [] Eval. 100 []	E ca 100.0000000 dual Cont= 10 dual Be 265	alc= 3.8634768579 00000000 cont 41 fit= 996 000000000.000000 23 fit= 100 st fit. 	9999998 t= 2.6623718 54201.93916267	ref= 3 55608865 90	fficient set fa	iled	
DISTANC c indivio <u>PENALTY</u>	E ca 100.0000000 dual Cont= 10 dual Be 265	alc= 3.8634768579 0000000 cont 41 fit= 996 0000000000.000000 23 fit= 100 st fit.	9999998 t= 2.6623718 54201.93916267	ref= 3 55608865 90	fficient set fa	iled	2
DISTANC (indivia PENALTY indivia (] Eval. (] 200 []	E ca 100.0000000 dual Cont= 10 dual Be 265	alc= 3.8634768579 00000000 cont 41 fit= 996 000000000.000000 23 fit= 100 st fit. 	999998 t= 2.6623718 54201.93916267	ref= 3 55608865 90	fficient set fa	iled	2
DISTANC indivia [] PENAL/IY indivia [] Eval. 100 [] 200 []	E ca 100.0000000 dual cont= 10 dual Bea 265 265	alc= 3.8634768579 00000000 cont 41 fit= 996 000000000.000000 23 fit= 100 st fit. 	999998 t= 2.6623718 54201.93916267	ref= 3 55608865 90	fficient set fa	iled	2
DISTANC C indivio PENALTY indivio C] Sval. 000 C] temperature tempe	E ca 100.0000000 dual cont= 10 dual Bea 265 265	alc= 3.8634768579 00000000 cont 41 fit= 996 000000000.000000 23 fit= 100 st fit. 	999998 t= 2.6623718 54201.93916267	ref= 3 55608865 90	fficient set fa	iled	2
DISTANC (indivio (] PENALTY indivio (] 200 (] # #Results	E ca 100.0000000 dual cont= 10 dual Bea 265 265	alc= 3.8634768579 00000000 cont 41 fit= 996 000000000.000000 23 fit= 100 st fit. 	999998 = 2.6623718 \$4201.93916267	ref= 3 55608865 90 00 ◀	fficient set fa	iled	2
DISTANC (indivio (] PENALTY indivio (] 200 (] # #Results	E ca 100.0000000 dual cont= 10 dual Bea 265 265	Alc= 3.8634768579 0000000 con1 41 fit= 996 000000000.000000 23 fit= 100 st fit. 24.58 24.58	999998 = 2.6623718 \$4201.93916267	ref= 3 55608865 90	fficient set fa	iled	> -
DISTANC (indivio	E ca 100.0000000 dual cont= 10 dual Bertas H ZS H ALP H	Alc= 3.8634768579 0000000 cont 41 fit= 996 000000000.000000 23 fit= 100 st fit. 24.58 24.58 -1.768452251222	999998 = 2.6623718 \$4201.93916267	ref= 3 55608865 90 00 ◀		iled	> •
DISTANC (indivio	E ca 100.0000000 dual cont= 10 dual 26: 26: 26: 26: 26: 26: 26: 26:	Alc= 3.8634768579 00000000 con1 41 fit= 996 0000000000000000 23 fit= 100 st fit. 24.58 24.58 -1.768452251222 -2.376986291435 +9.99189850692 +10.914581171663	999998 = 2.6623718 \$4201.93916267	ref= 3 55608865 90 00 *st of all in an. Saved int		iled	
DISTANC C indivit indivit indivit indivit indivit C Sval Sval C C C C C C C C C C C C C	E ca 100.0000000 dual cont= 10 dual Be: 265 265 265 265 265 265 265 265	alc= 3.8634768579 10000000 cont 41 fit= 996 10000000000000000 23 fit= 100 st fit. 24.58 -1.768452251222 -2.376986291435 +9.991399850692 +10.914581171663 +6.828760684854	999998 = 2.6623718 54201.93916267 000000000.0000 The be this ru	ref= 3 55608865 90 00 *st of all in an. Saved int		iled	
DISTANC C indivio	E ca 100.0000000 dual cont= 10 dual Bertas H 265 265 265 265 265 265 265 265	Alc= 3.8634768579 0000000 con1 41 fit= 996 0000000000000000 23 fit= 100 st fit. 24.58 24.58 -1.768452251222 -2.376986291435 +9.991399850692 +10.914581171663 +6.828760684854 -29.019169662622	999998 = 2.6623718 54201.93916267 000000000.0000 The be this ru	ref= 3 55608865 90 00 *st of all in an. Saved int		iled	> •
DISTANC (indivio	E ca 100.0000000 dual cont= 10 dual Beras H 263 263 263 263 263 263 263 263	Alc= 3.8634768579 0000000 con1 41 fit= 996 00000000000000000 23 fit= 100 st fit. 24.58 24.58 24.58 -1.768452251222 -2.376986291435 +9.991399850692 +10.914581171663 +6.828760684854 -29.019169662622 +74.815480306193	999998 = 2.6623718 54201.93916267 000000000.0000 The be this ru	ref= 3 55608865 90 00 *st of all in an. Saved int		iled	
DISTANC C indivio	E ca 100.0000000 dual cont= 10 dual Bertas H 265 265 265 265 265 265 265 265	Alc= 3.8634768579 0000000 con1 41 fit= 996 0000000000000000 23 fit= 100 st fit. 24.58 24.58 -1.768452251222 -2.376986291435 +9.991399850692 +10.914581171663 +6.828760684854 -29.019169662622	999998 = 2.6623718 54201.93916267 000000000.0000 The be this ru	ref= 3 55608865 90 00 *st of all in an. Saved int		iled	
DISTANC (indivia	E ca 100.0000000 dual cont= 10 dual Bee 265 265 265 265 265 265 265 265	alc= 3.8634768579 10000000 cont 41 fit= 996 10000000000000000 23 fit= 100 23 fit= 100 24.58 24.58 24.58 -1.768452251222 -2.376986291435 +9.991399850692 +10.914581171663 +6.828760684854 -29.019169662622 +74.815480306193 +2.377750618559	999998 = 2.6623718 54201.93916267 000000000.0000 The be this ru	ref= 3 55608865 90 00 *st of all in an. Saved int		iled	
DISTANC (indivia	E ca 100.0000000 dual cont= 10 dual Bee 265 265 265 265 265 265 265 265	alc= 3.8634768579 10000000 cont 41 fit= 996 10000000000000000 23 fit= 100 23 fit= 100 24.58 24.58 24.58 24.58 -1.768452251222 -2.376986291435 +9.91399850692 +10.914581171663 +6.828760684854 -29.019169662622 +74.815480306193 +2.377750618559 +2.854646124344 -1.962588155625 -5.219131584847	999998 = 2.6623718 54201.93916267 000000000.0000 The be this ru	ref= 3 55608865 90 00 *st of all in an. Saved int		iled	
DISTANC: (indivio (] PENALTY indivio (] Eval. 100 (] WResults 1 2 3 4 5 6 7 8 9 10 11 12	E ca 100.0000000 dual cont= 10 dual Bertas H ZS H ALP H GSS H ALP H USS C UPP C BETAS C BETAS C ZF C ZF C ZF C ZF C ALP C GSS C	alc= 3.8634768579 10000000 conf 41 fit= 996 10000000000000000 23 fit= 100 23 fit= 100 24.58 25.50 21.57 25.52122 25.521225 25.521355 25.5213155625 5.5219131584847 +4.110906954906	999998 = 2.6623718 54201.93916267 000000000.0000 The be this ru	ref= 3 55608865 90 00 *st of all in an. Saved int		iled	
DISTANC (indivio indivio indivio (] PENALTY indivio (] Eval. (] # Results # Results # 1 2 3 4 5 6 7 8 9 10 11 12 13	E ca 100.0000000 dual cont= 10 dual 263 263 263 263 263 263 263 263	Alc= 3.8634768579 0000000 con1 41 fit= 996 000000000.000000 23 fit= 100 st fit. 24.58 24.58 24.58 24.58 -1.768452251222 -2.37698629145 +9.91399850692 +10.914581171663 +6.828760684854 -29.019169662622 +74.815480306193 +2.854646124344 -1.962588155625 -5.219131584847 +4.110906954906 +12.013191111392	999998 = 2.6623718 54201.93916267 000000000.0000 The be this ru	ref= 3 55608865 90 00 *st of all in an. Saved int		iled	
DISTANC: (indivio (] PENALTY indivio (] Eval. 100 (] WResults 1 2 3 4 5 6 7 8 9 10 11 12	E ca 100.0000000 dual cont= 10 dual Bertas H ZS H ALP H GSS H ALP H USS C UPP C BETAS C BETAS C ZF C ZF C ZF C ZF C ALP C GSS C	alc= 3.8634768579 10000000 conf 41 fit= 996 10000000000000000 23 fit= 100 23 fit= 100 24.58 25.50 21.57 25.52122 25.521225 25.521355 25.5213155625 5.5219131584847 +4.110906954906	999998 = 2.6623718 54201.93916267 000000000.0000 The be this ru	ref= 3 55608865 90 00 *st of all in an. Saved int		iled	

File 13.2: **shepherd** example output

So there are a lot of files named $A, B, C, \ldots, AA, AB, \ldots$ -following the **GAFit**'s *automatic coefficient names* convention, as explained in Section 15.4–, each of them containing a unique coefficient set to be used as external file for the *mopac template* –See Step 6 in page 92–. In the example, 100 sets comprised from A to CV.

Also, the *mopac template* file is cloned to a file named taking into account the first and last coefficient set to calculate in the task. For example, if the first coefficient set is the first of all -A coefficient set file– and the last the $29^{\text{th}} -AB$ coefficient set file–, the file cloned would be *A*-*AB.mop*. This is a "*flock*" of 29 "*sheep*".

This behaviour is restricted in the code to a one set only: one set per **MOPAC** 2009 task –a *sheep* per *flock*–, so the *mopac template* file is cloned to files like *A-A.mop*, *B-B.mop*, ..., *CV-CV.mop*. See Section 22.2 about **burst** mode if you want to change this behaviour.

After processing an entire population by **shepherd**, **extractor** extracts the data and **fitter** evaluates it as shown in Section 12.

Here, we can use the same trick –Section 12.3– evaluating the *best.txt* to examine the fitting details:

<pre>\$ cp best.txt mopac.input</pre>	
<pre>\$./external-mopac2009.sh</pre>	1
shepherd #flocks:1	
shepherd elapsed time:0	.338015
extractor correct/total	:1/1
DELTA calc=	22.545130000005884 ref= 100.59999999999999
we= 0.1000000000000001	cont= 6.02010474994563588E-002
FREQUENCY calc=	2117.290000000000 ref= 3271.00000000000
we= 1.000000000000005E	-004 cont= 1.24403393046421793E-005
DISTANCE calc=	3.6747770408556764 ref= 3.700309095999998
we= 100.000000000000	cont= 4.76097105301748029E-003
individual :	1 fit= 6.49744588917784832E-002
Ş	

Part III

Reference

14

Evolutionary Algorithms

I am turned into a sort of machine for observing facts and grinding out conclusions.

Charles Darwin

Evolutionary algorithms are a good tool in Global Optimization because they make no assumptions about the problem, and therefore, they usually perform very well in all types of problems^[7].

These algorithms employ techniques inspired in biology such as reproduction, mutation, recombination and selection applied to a set of candidates used as a population to find optimal ones.

Evolutionary algorithms proceed according to the scheme shown in Figure 14.1. A population is initialized; then, each member is evaluated according to some objective function. And finally, some of the members are selected to create a new population using reproduction techniques. The

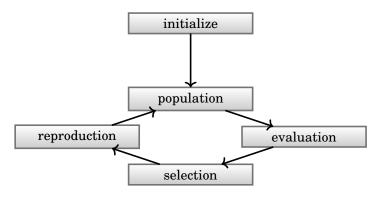


Figure 14.1: Evolutionary algorithms.

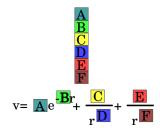


Figure 14.2: Genes and chromosome example: 4^{th} potential from Table 17.2.

process continues until a population member turns out to be a good solution, or a maximum number of populations are reached.

There are many evolutionary algorithm types with distinctive features depending on how the populations are used, how the individuals are represented, how the individuals are selected to reproduction, how the offspring are included in the population of the next generation, etc.

The population of the next generation can be formed from:

- a combination of the current population and its offspring,
- some or all of the offspring, and none of the current generation individuals,
- none or some of the best individuals –known as elitist algorithm– are propagated to the next generation.

We describe here two types of evolutionary algorithms of our interest: Genetic Algorithms and Genetic Programming.

14.1 Genetic Algorithms

The individuals are described by an array of elementary types –the *genes*: any suitable representation, including bits and bytes– similar to a deoxyribonucleic acid (DNA) string, and are also called a *chromosome*.

Each *gen* can describe a characteristic, e.g. a double precision polynomial coefficient value like the example in Fig. 14.2 where is represented the 4^{th} potential from Table 17.2.

Chromosomes could be fixed or variable length strings. The type, number, characteristics, etc of genes and how they are related in the chromosoma is a problem type dependent matter.

There are some *genetic operators* which can be applied over a chromosome string: **Mutation**, **permutation** and **crossover**.

Mutation

Mutation randomly changes one or more genes. If the chromosomes are of fixed length, we may have a single gene mutation (Fig. 14.3) or a multiple gene mutation (Fig. 14.4), and if the chromosomes are of variable length, there can be an insertion (Fig. 14.5) or a deletion (Fig. 14.6).

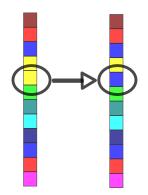


Figure 14.3: Single gene mutation.

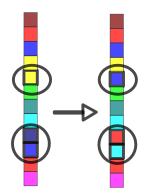


Figure 14.4: Multiple gene mutation.

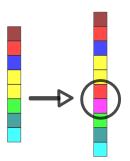


Figure 14.5: Variable lenght insertion.

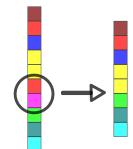


Figure 14.6: Variable lenght deletion.

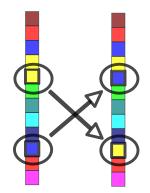


Figure 14.7: Permutation.

Permutation

Permutation exchanges a pair of genes. Fig. 14.7.

Crossover

Crossover recombines two chromosomes to obtain a new one. Some crossover types are described in the literature as Single Point Crossover (SPC), Double Point Crossover (DPC), and Multiple Point Crossover (MPX). As above, the chromosomes can be of fixed or variable length. See Fig. 14.8, 14.9, 14.10 and 14.11.

14.2 The Genetic Algorithm used in GAFit

The genetic algorithm used here was developed by Marques, Prudente, Pereira, Almeida, Maniero, and Fellows [2] and co-workers and slightly modified to support integer parameters in the function employed to fit interaction energies. The GA main loop is shown in File 14.1. As expected, it begins creating and evaluating the first population prior to run into the main loop –a *do-while* between lines 109-179–.

File 14.1: core.c

64

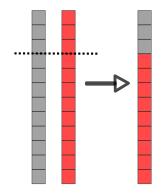


Figure 14.8: Single point crossover.

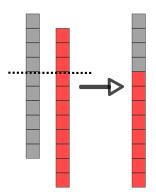


Figure 14.9: Variable lenght single point crossover.

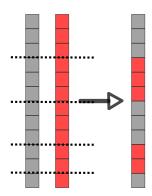


Figure 14.10: Multiple point crossover.

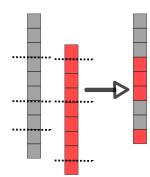


Figure 14.11: Variable lenght multiple point crossover.

```
// allocates memory for individuals (to generate the new
65
       population)
     initializeNewPopulation (jo);
66
67
68
     11
        evolution cycle
     do
69
70
       {
71
         generation++;
72 //***
                         ******
73
         current_evaluations += genetic (jo);
74 //*
                                   *****
         update_all_time_best (jo);
75
76
         // output stats each 'outputeach' evaluations
77
78
         if (current_evaluations - last_evals > outputeach)
79
           {
             last_evals = current_evaluations;
80
81
             stats (jo, generation, current_evaluations);
           }
82
83
       }
     while (current_evaluations < jo->evaluations);
84
85
     //last stats
86
87
     stats (jo, generation, current_evaluations);
88
89
90
     for (i = 0; i < jo->pop_size; i++)
91
92
       {
         free (jo->population[i].genes);
93
         free (jo->new_population[i].genes);
94
       }
95
     free (jo->population);
96
97
     free (jo->new_population);
     free (jo->best.genes);
98
     free (jo->new_best.genes);
99
100
101
     // release memory of old population
102 }
103
104 void
105 runJob (JOB * jo)
106 {
                                    // current run
     int run;
107
    FILE *output;
108
```

```
109
      time_t t1, t2;
      char randtext[TEXT_RANDOM_SIZE];
110
111
112
      initBest (jo);
113
114
      time (&t1);
115
      for (run = 1; run \le jo \rightarrow runs; run++)
116
117
        {
           //************ hook to test mode *******//
118
119
           init_rand (jo->test, randtext);
120
                                                *******//
           121
122
           if (jo->print_run || jo->test != 0)
123
             {
               printRuRa (stdout);
124
125
               if (jo->print_run)
126
                 {
127
                   printRun (stdout, run);
                 }
128
129
               printRand (stdout, randtext);
130
               printRuRa (stdout);
             }
131
132
           jo->last_print = 0;
133
           // header
134
135
           output = fopen (OUTPUT_FILE, "at");
           fprintf (output, "run_%d\n", run);
fprintf (output, "%s", randtext);
136
137
           fclose (output);
138
139
           algorithm (jo);
140
           fflush (stdout);
141
142
        }
143
      time (&t2);
144
      avg_stats (jo \rightarrowruns, t2 - t1, jo \rightarrowdir);
145
146
      free (jo->bounds);
      cleanJob (jo);
147
148 }
149
150
151 // main function
152 int
153 main (int argc, char **argv)
154 {
      JOB job;
155
156
      initJob (&job);
157
158
159
      banner (stdout, &job);
160
      // read print options
161
162
      ReadPrintOptions (&job);
163
      // read GA parameters
164
165
      ReadGaParameters (&job);
166
167
      // setup job
      ReadJobType (&job);
168
169
      // read data and set job's parameters
170
```

```
job.bounds = ReadJobExternal (&job);
171
172
     if (job.bounds != NULL)
173
174
       {
175
          // Run GA
176
          runJob (&job);
          if (job.final_evaluation)
177
178
              char run_command[STRING_MAX];
179
              snprintf (run_command, STRING_MAX - 1, "%s_-1",
180
```

The system is configured reading an input file –Section 15–. Once configured, the GA main loop routine starts and continues till a maximum number of evaluations is reached as shown in Figure 14.12. The GA only comunicates with the external world –internal or external routines or programs– through the evaluation phase and when some subroutines print outputs.

Table 14.1: GA subroutines

subroutine	source	comments
ga tournament_selection apply_elitism apply_crossover apply_mutation evaluate_pop	ga.c selection.c crossover.c mutation.c evaluation.c	main loop tournament algorithm elitism algorithm crossover mutation this subroutine works as an interface switching the evaluation to the desired type of application
get_best	selection.c	or or or

Tournament Selection

A subset of K individuals are selected randomly from the old population. The best of the set is selected and introduced in the new population. This operation is repeated till the new population is completed. K is the tournament controlling parameter: *Tournament size*.

Genetic operations

Crossover

For all the population, each two consecutive individuals, a random number between 0 and 1 is obtained and if it is greater than the *crossover rate* a crossover is performed obtaining two new offspring replacing their parents. The type of crossover selects the operator to apply:

- Single point crossover. A random point is selected and the offspring are obtained from the parents by exchanging the tail segments.
- Double point crossover. Two random points are selected and the offspring are obtained from the parents by exchanging the center segments.

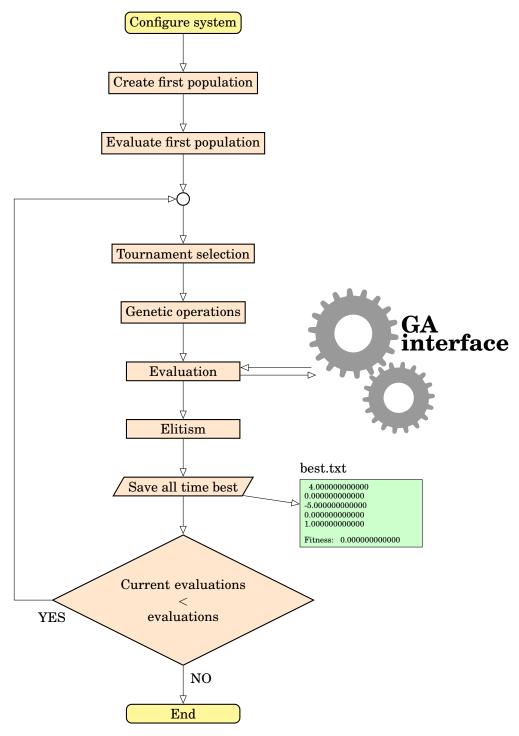


Figure 14.12: GA main loop

- Simulated Binary Crossover (SBX)^[8]. SBX simulates a SPC operator on binary strings obtaining two offspring having some interesting properties to self-adaptation^[9]:
 - high probability to mantain the extend between them like the parents
 - high probability to be near the parents values

SBX works as follows:

- A random value between 0 and 1 is selected: $\mu \in [0, 1]^1$.
- Using a uniform distribution we calculate β so the area under probability curve from 0 to β is equal to μ :

$$\beta = (2\mu)^{\frac{1}{\eta+1}} \quad if \ \mu \le 0.5$$

$$\beta = (\frac{1}{2(1-\mu)})^{\frac{1}{\eta+1}} \quad if \ \mu > 0.5$$

- Now, we obtain the two children, C_1 and C_2 , from the parents, P_1 and P_2 :

$$C_1 = \frac{1}{2} \left[(1+\beta)P_1 - (1-\beta)P_2 \right]$$
$$C_2 = \frac{1}{2} \left[(1-\beta)P_1 + (1+\beta)P_2 \right]$$

The controlling parameter is η –eta_sbx, Table 15.1– which is a real non negative number. Larger values increase probability of children close to their parents while small ones increase probability of distant children^[2].

 Blend Alpha Crossover (BLX-α)^[10]. BLX-α crossover creates new offspring choosing a random value for each gene in the range:

$$[G_{min} - \Delta\alpha, G_{max} + \Delta\alpha]$$

Here G_{min} and G_{max} are the smallest and largest of the two parents gene values. Δ is $G_{max} - G_{min}$. The value obtained is checked and limited to the acceptable values for the gene, called the bounds.

BLX- α crossover has the first interesting self-adaption property of SBX: high probability to mantain the extend between them like the parents^[9].

The controlling parameter is α –blx_alpha, Table 15.1– which determines the degree of variability. It was reported that a value $\alpha = 0.5^2$ performs better than other values for many test problems^[9].

SBX and BLX- α are arimetic crossovers. In both cases, if an integer gene type is used, they revert to a Single Point crossover.

 $^{^1 \}rm Really,$ here the coded implementation is $\mu \in [0,0.99]$ to avoid a divide by zero problem in the calculation of β

²Known as BLX-0.5 crossover

Mutation

The application is slighty different from the crossover operators. Here *mutation rate* operates over genes while *crossover rate* operates over individuals:

- For all individuals in the population, a call to mutation subroutines is performed obtaining a new offspring replacing the parent.
- For each individual's gene, a random number between 0 and 1 is obtained, and if it is greater than the *mutation rate* the corresponding mutation is performed in the gene³.

There are four types of mutation to apply upon coefficient nature and user choice:

- Real coefficients: Random and sigma.
 - Random mutation. The parent gene is replaced by a random number obtained from the acceptable set of values for the gen -bounds-.
 - Sigma mutation. The child gene, G_{child} , is replaced by a new value calculated from parent G_{parent} as:

$$G_{child} = G_{parent} + \sigma (G_{max} - G_{min}) N(0, 1)$$

 G_{max} and G_{min} are bounds, N(0,1) is a random value sampled from a *standard normal distribution* and σ -sigma, Table 15.1is the control parameter.

The value is checked against the bounds, and if in five tries a suitable value between bounds is not found, a *random* mutation is performed.

- Integer coefficients: *Random* and *adjacent*.
 - *Random* mutation. The parent gene is replaced by a random integer number between bounds.
 - Adjacent mutation. Adjacent changes the parent gene by a unit amount as follows:

$$G_{child} = \begin{cases} G_{min} + 1 & \text{if } G_{parent} = G_{min} \\ G_{max} - 1 & \text{if } G_{parent} = G_{max} \\ \text{otherwise randomly:} & \begin{cases} G_{parent} + 1 \\ G_{parent} - 1 \end{cases} \end{cases}$$

Elitism

Finally, elitism is applied: A random individual of the new generation is replaced with the best from parent generation ensuring that the quality of the best does not decrease along the time.

 $^{^3\!\}mathrm{As}$ the mutation rate drops to zero, the probability that the parent replaces itself increases.

Input files

Garbage in, garbage out.

George Fuechsel. IBM instructor.

The input files names are of your choice, except for *job and parameters file*. The *job and parameters file* was hardcoded as *job.txt*¹.

File 15.1: job.txt. Genetic algorithm parameters and job settings for an intermolecular module job

[job]
runs: 1
type:_external_auto
command:_external-intermolecular.sh
evaluations:5000000
Geometries:moldeni.dat
Energies:energies.dat
Atom2type:atom2types.txt
Bounds:bounds.txt
Charges:charges.txt
Potential:
All_coefficients:_no
fitting:relative
[parameters]
population:50
crossover_rate:0.75
blx_alpha:0.5
mutation_rate:0.1
elitism:yes
tournament_size:_5
crossover:sbx
mutation:sigma
sigma:0.1
direction:min

 $^1\mathrm{Defined}$ in ga.h

[print]	
geometries:_yes	
runs:yes	

There are fourth fixed *sections*, which can be put in any order, have their own parameters, which can also be used in any order; these *sections* specify:

parameters These parameters affect the genetic algorithm working mode.

job The job to be done.

print Diverse printing options.

coefficient names This section is used to set a user name to each coefficient.

Each option, including the whole sections, can be avoided, but the file *job.txt* itself must be present. In case of omited parameters, the program takes some default values (See table 15.1), so you can write a *job.txt* file like 15.2. This case is included in the *advanced mode examples, miscellaneous, external* example as *minimal-job.txt* file.

```
File 15.2: Reduced job.txt.
```

```
[job]
coefficients:__5
```

False bool values can be written as "0" or "no". True bool values can be written as a "number <>0" or "yes". Some parameters have a set of valid values to choose from. If the chosen parameter is out the set, the default will be taken. Parameters and sections are case-insensitive, but in parameters names with more than one word whitespace matters! Please, use one space between words.

Section	Parameter	Туре	Valid set	Default
parameters				
1	population	integer		100
	crossover rate	real		0.75
	crossover	string	{spc, dpc, blax, sbx}	sbx
	blx_alpha	real		0.5
	eta_sbx	real	non negative	2.0
	mutation rate	real		0.1
	mutation	string	{random, sigma}	sigma
	sigma	real		0.1
	integer mutation	string	{random, adjacent}	random
	elitism	bool	{yes, no}	yes
	tournament size	integer		5
	direction	string	{min, max}	min
job				
	type	string	{external, external bulk, exter- nal auto}	external
	runs	integer		1
	evaluations	integer		5000
	command	string		./external
	external input	string		external.input
	external fit	string		external.fit
	coefficients	integer		0

Table 15.1: Job file default value parameters

Section	Parameter	Type	Valid set	Default
print	runs ga settings	bool bool	{yes, no} {yes, no}	yes no

In the Table 15.1 is summarized all common configuration options and its default values. There are options not shown in the Table applicable to some modules. i.e. the specific parameters for the **intermolecular module** are shown In the Table 17.1.

An alternative configuration, the *simple configuration mode*, was developed using the keyword **application** in the **[job]** section with some selected application modules. These work using the defaults for the module and specifying only the options that must be set by user as shown in Table 15.2.

Table 15.2: Job file, application modules options

Section	Parameter	Туре	Valid set	Default			
job							
	application module intermolecular						
	application	string	intermolecular	must be set			
	evaluations	integer		5000			
	potential	integer		1			
	interactions	string	inter,all	inter			
			cation module mopac				
	application	string	mopac	must be set			
	evaluations	integer		5000			
	exec	string	absolute path to mopac exe-	none, must be set			
			cutable including binary				
			ation module charmm				
	application	string	charmm	must be set			
	evaluations	integer		5000			
	exec	string	absolute path to charmm exe- cutable including binary	none, must be set			
	refgeom	string	reference geometry	none			
	calculated energies	two integers	which columns are the geom-	none, must be set			
			etry names and the calculated energies				
		applica	tion module myariable				
	application	string	mvariable	must be set			
	evaluations	integer		5000			
	coefficients	integer	number of coefficients to fit	none, must be set			
		applic	ation module generic				
	application	string	generic	must be set			
	evaluations	integer	-	5000			
	ncores	integer	number of parallel calculations	1			
	template	string	templates	template			
	executable	string	user provided script	none, must be set			
	reference values	string	reference data	reference.values			

The examples for this mode were shown in the SimplifiedUserGuide.pdf.

15.1 Section [parameters]

The section [parameters] contains the genetic algorithm settings.

population Population size

elitism Elistism strategy. Section 14.2.

• no

• yes

tournament size Tournament selection size. Section 14.2.

crossover rate Crossover rate. Section 14.1.

blx_alpha BLX- α crossover coefficient

eta_sbx SBX crossover coefficient

crossover Crossover type.

- spc: Single Point Crossover
- dpc: Double Point Crossover
- blax: Blend Alpha Crossover
- sbx: Simulated Binary Crossover

mutation rate Mutation rate. Section 14.2.

mutation Mutation type

- random = Random mutation
- sigma = Sigma mutation

sigma Sigma mutation coefficient

integer mutation Mutation operator for integer variables. Section 14.2.

- random
- adjacent

direction Search direction

- min: Minimization
- max: Maximization

15.2 Section [job]

This section defines the run parameters for the present job. It also indicates the names of the different files for the calculation.

The job parameters from the *job* section are:

Type type of job:

- external Each gene is passed to the external program, one per run.
- **external bulk** All the genes of the same generation are passed to the external program, an entire generation per run, reducing the overall load, speeding up calculations.
- **external auto GAFit** is configured by the **external command**. See 21.1.

Test If it is not equal to zero, the integer is used as random seed, breaking the system randomness. This is the *test mode*, useful for testing purposes. For as standard job you should use a random number: set to zero this value or do not put anything. The used seed in a job is printed one per run –if the option **print runs** is activated– in the standard output and in the file *stats.txt* as shown below. The use of this option forces one run despite the value of the **runs** parameter.

```
[...]
run 1
TEST MODE seed: 1488732015
[...]
```

Runs Number of runs. If the *test mode* is activated, only one run is performed.

Evaluations Number of generations

Bounds The variation range of the coefficients is specified here. The third column specifies if the coefficient will be treated as a real (0) or integer (1) number. The number of lines depends on **All coefficients** parameter -[job] section- and the chosen **potential** in *job file*.

File 15.3: Bounds. Variation range of the coefficients

TEXT_OR_EMPTY
$-\!\!\!-\!\!\!-\!\!\!-100 -\!\!\!-\!\!\!\rightarrow \!\!\!-100\!\!\!-\!\!\!\rightarrow \!\!0$
$\longrightarrow 0. \longrightarrow 100.0 \rightarrow 0$
$-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!1500.\!\rightarrow\!\!5000.0\!\rightarrow\!\!0$
$-\!$

File 15.4: Bounds. All Coefficients=0. Structure

TEXT_OR_EMPTY_LINE
$1stMinimum \longrightarrow 1stMaximum \longrightarrow 1stType$
2 ndMinimum \longrightarrow 2 ndMaximum \longrightarrow 2 ndType
3rdMinimum
4 thMinimum \longrightarrow 4 thMaximum \longrightarrow 4 thType
$nthMinimum -\!\!\!\!\longrightarrow \!\!\! nthMaximum -\!\!\!\!\longrightarrow \!\!\!nthType$

File 15.5: Bounds. All Coefficients<>0. Structu	\mathbf{re}
---	---------------

TEXT_OR_EMPTY_LINEinteraction_1_coefficients_set
1stMinimum + 1stMaximum + 1stType
2ndMinimum> 2 ndMaximum> 2 ndType
$3rdMinimum \longrightarrow 3rdMaximum \longrightarrow 3rdType$
4 thMinimum \longrightarrow 4 thMaximum \longrightarrow 4 thType
nthMinimum > nthMaximum > nthType
TEXT_OR_EMPTY_LINEinteraction_2_coefficients_set
$1stMinimum \longrightarrow 1stMaximum \longrightarrow 1stType$
$2 ndMinimum \longrightarrow 2 ndMaximum \longrightarrow 2 ndType$
$3rdMinimum \longrightarrow 3rdMaximum \longrightarrow 3rdType$
4 thMinimum \longrightarrow 4 thMaximum \longrightarrow 4 thType
$nthMinimum -\!\!\!\!\!\longrightarrow \!\!\! nthMaximum -\!\!\!\!\!\longrightarrow \!\!\!nthType$

TEXT_OR_EMPTY_LINEinteraction_N_coefficients_set
$1stMinimum \longrightarrow 1stMaximum \longrightarrow 1stType$
2 ndMinimum $\longrightarrow 2$ ndMaximum $\longrightarrow 2$ ndType
$3rdMinimum \longrightarrow 3rdMaximum \longrightarrow 3rdType$
4thMinimum
$nth Minimum -\!$

The text line between each interaction is skipped when reading bounds. Note that BLX- α and SBX revert to SPC crossover for integer coefficients.

$TYPE_1:C(1)-Xe(14)$
+0.00000, $+1000000000000000000000000000000000000$
+10.00000
-1500.00000 $+0.00000$ 0
+4.00000
$TYPE_2: N(2) - Xe(14)$
+100000.00000_00
+0.00000, $+10.00000$, 0
-1500.00000 $+0.00000$ 0
+8.00000
$TYPE_{13}: C(3)-Xe(14)$
+1000000.000000
+10.00000, $+10.00000$, 0
-1500.0000, -1500.0000 , -1.000000 , -1.000000 , -1.000000 , -1.000000 , -1.000000 , -1.000000 , -1.000000 , -1.000000 , -1.000000 , -1.000000 , -1.000000 , -1.0000000 , -1.0000000 , -1.0000000 , -1.0000000 , -1.0000000 , -1.0000000 , -1.0000000 , -1.0000000 , -1.0000000 , -1.0000000 , -1.0000000 , -1.00000000 , -1.00000000 , $-1.000000000000000000000000000000000000$
+4.00000 + 8.00000 = 0
$\overrightarrow{\text{TYPE}}_4: \underline{N(4)} - \overline{Xe(14)}$
+1000000.000000
+10.00000
-1500.00000 $+0.00000$ -100000
+4.00000 +8.00000
$\underline{\text{TYPE}}_{5:}C(5) - \underline{\text{Xe}}(14)$
$+0.00000_{}+1000000_{}0$
+10.00000
-1500.00000 $+0.00000$ -1500.00000
+4.00000+8.000000

File 15.6: Bounds file

Command External job, the **command** to be run.

File 15.7: External job settings

[job]
runs:1
evaluations:500000
type:external_bulk
command:external.sh
coefficients:5
external_input:_external.input
external_fit:external.fit
bounds:bounds.txt

External input External job, the input for the external **command**, File 15.8. Here **GAFit** writes a coefficient vector to be evaluated by the external command. If the option *external bulk* is chosen, all the coefficients for a complete generation are passed, separating each one by a blank line, File 15.9.

File 1	5.8:	External	input
--------	------	----------	-------

4.894146	
0.013449	
-6.092118	
-0.003859	
1.216052	

File 15.9: External l	bulk	input
-----------------------	------	-------

4.894	4146
0.013	3449
-6.09	92118
-0.0	03859
1.216	6052
4.894	4410
0.013	3449
-6.09	91149
-0.00	03859
1.215	5979
4.894	4332
0.013	3449
-6.09	91579
-0.0	03859
1.216	6001

External fit External job, the evaluation of the coefficients returned to **GAFit**. If the option *external bulk* is used, a complete set must be returned. Examples: 15.10 and 15.11.

File 15.10: External	fit: one	individual fit
----------------------	----------	----------------

25647.561250		

File 15.11: External bulk fit: entire generation fit

25647.561250	
3.000000	
13.011250	
6417.651250	
3.000000	
3.000000	
3.000000	
18.055000	
13.011250	
3.000000	
25647.561250	
7012.161250	
4715.805000	
[]	

Coefficients Number of coefficients to be considered in a external job.

15.3 Section [print]

This section controls how much is printed.

Runs This parameter controls if the intermediate results are printed on standard output. See 16.

GA settings Prints genetic algorithm settings.

15.4 Section [coefficient names]

GAFit coefficient names default to the sequence {A, B, ..., Z, AA, AB, ..., BA, ..., AAA, ...} names and so on. If you want to use your own ones, write a new section [coefficient names] with each name in a line. You must specify at least the same number of lines as the number of coefficients to be used; if not, **GAFit** stops. An example can be viewed in File 21.1.

These routines are also used internally to no related tasks like to name temporary files.

16

Output files

On two occasions I have been asked, "Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?" ... I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question.

Charles Babbage

standard output The standard output is used to print job results. An example of the output is below. Some of the output is controlled by options into the **[print]** section. See 15.3.

1
GAFit 1.3d Build:314 **TEST MODE, seed:1488732015 ** Fri Mar 2 16:09:22 2018
 Cite this program as GAFit 1.3d []
INTERMOLECULAR MODULE
Coordinates:[coord.molden] Energies:[energies.txt] Atom2type:[atom2type.txt] Bounds:[bounds.txt] Charges:[charges.txt] Potential read: 1 All coefficients: no, Read and repeat subset Interactions types: inter Fitting: relative
PRINT OPTIONS
geometries no analytical no
INTERACTIONS
Different interaction types: 13,

```
with 4 coefficients each.
with 4 coefficients each,
so, we need a 52 elements vector.
Choosen potential=1
Fragment A atoms: 13, Fragment B atoms: 1
Fragment A types: 13, Fragment B types: 1
 Reading bounds for 4 coefficients
            +0.00000 - +100000.00000 (real)
+0.00000 - +10.00000 (integer)
-1500.00000 - +0.00000 (real)
+4.00000 - +8.00000 (integer)
A
B
C
D
52 BOUNDS VECTOR:
 INTERACTION TYPE 1
 C(1)-Xe(14)
 Coefficients:

        Coefficients:
        +0.00000 -
        +100000.00000 (real)

        1
        A
        +0.00000 -
        +10.00000 (integer)

        2
        B
        +0.00000 -
        +10.00000 (integer)

        3
        C
        -1500.00000 -
        +0.00000 (real)

        4
        D
        +4.00000 -
        +8.00000 (integer)

        INTERACTION TYPE 2
        -
        -

 N(2)-Xe(14)
 Coefficients:
                                +0.00000 - +100000.00000 (real)
+0.00000 - +10.00000 (integer)
-1500.00000 - +0.00000 (real)
+4.00000 - +8.00000 (integer)
 5
6
                   A
B
                   C
D
 8
[...]
INTERACTION TYPE 13
 H(13)-Xe(14)
------
| Settings for job
+-----
      Command:[./external-intpot.sh]
            Bounds: [bounds.txt.internal]
             External input:[intpot.input]
External fit:[intpot.fit]
             Total coefficients: 52
Print options: runs yes, ga settings no
        run: 1
TEST MODE seed: 1488732015
 Eval.
                                           Best fit.
                 22.5565
22.5565
 100
 200
[...]
5000
                                        4.53655
 #Results
 INTERACTION TYPE 1
 C(1)-Xe(14)
 Coefficients:

        1 A
        +901608.8066303307

        2 B
        +4.0000000000

        3 C
        -6.4303232967

        4 D
        +5.000000000

 INTERACTION TYPE 2
 N(2)-Xe(14)
N(2)-Xe(14)
Coefficients:
5 A +165595.8679798347
6 B +7.000000000
7 C -1138.2394540608
             +7.000000000
-1138.2394540608
                +5.0000000000
8 D
[...]
```

```
INTERACTION TYPE 13
H(13)-Xe(14)
Coefficients:
49 A +520130.0359805273
50 B +2.000000000
         -886.9079425981
51 C
52 D
          +8.000000000
"
#Evaluation
#Geometry
            Energy
                          Calculated
                                         Difference
                                                       Weight
   +1.00
                                                 +1.00
2
     +146.056144000000 +213.560874079430 +46.22 %
30
                                                      +1.00
    +297.072019000000 +611.114367352091
                                        +105.71 %
                                                       +1.00
31
```

If the **runs** option is set in section **[print]**, like above, the number of the current run is printed –just above the random number seed–, and also two columns indicating:

- The number of individuals evaluated up to now, *5000* in the last line before *#Results*.
- And the objective function best value up to now: 4.53655.
- **best.txt** This file contains the best set of coefficients. It is updated every time **GAFit** finds a better set, and it can be used by **fitview** -see 20.2-to obtain the coefficient values.

NOTE: This file is NOT loaded at the beginning of any run, so it can be overwritten when a new run begins if you do not save it beforehand.

16.1 Other output files

Other intermediate output files are:

• stats.txt This file show statistical data about the fitting showing the number of evaluations performed, the generation, the average fitting in the generation and the best fit till now.

run 1 TEST MODE	seed: 148	38732015	
Eval.	Gen.	Average/population	Best fit.
100 200	1 2	5.03763e+14 1.05173e+13	16027.9 2624.58

Intermolecular module: input files

DNA is like a computer program but far, far more advanced than any software ever created.

Bill Gates

Specific parameters for the **intermolecular module** are shown In the Table 17.1.

Section	Parameter	Туре	Valid set	Default
job	geometries energies atom2type bounds charges potential all coefficients fitting	string string string string integer bool string	{yes, no} {absolute, relative, user}	geometries.txt energies.txt atom2type.txt bounds.txt charges.txt 1 yes relative
print	geometries analytical	bool bool	{yes, no} {yes, no}	yes yes

Table 17.1: Job file default value for intermolecular module specific parameters

File 17.1: job.txt. Genetic algorithm parameters and job settings for an intermolecular module job

[job]
runs:1
type:_external_auto
command:_external-intermolecular.sh
evaluations:5000000
Geometries:moldeni.dat
Energies :energies . dat
Atom2type:atom2types.txt
Bounds:bounds.txt

Charges:charges.txt	
Potential:1	
All_coefficients:_no	
fitting:relative	
[parameters]	
population: 50	
crossover_rate:0.75	
blx_alpha:0.5	
mutation_rate:0.1	
elitism:yes	
tournament_size:_5	
crossover:sbx	
mutation:	
sigma:	
direction:min	
[print]	
geometries:_yes	
runs:yes	

17.1 Section [job]

The job parameters from the *job* section are:

Geometries Continuous set of **molden** format Cartesian geometries without any empty lines between them.

$ \begin{array}{c} & 116 \\ & & \\ & $
$X_{i} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
N = 13.694289 = -0.182672 = 0.000000
$[H_{___} - 13.299638]_{_____} 0.824476]_{_____} 0.000000$
$C_{} - 12.403476_{} - 0.960776_{} 0.000000$
$_H__\14.263389___\0.348152___\0.831048$
$H_{1} - 14.263389_{1} - 0.348152_{1} 0.831048$
$C_{\text{LLL}} - 11.316612_{\text{LLLLL}} 0.153002_{\text{LLLLL}} 0.000000$
$[H_{___} - 12.348018]_{____} - 1.588139]_{____} - 0.892698$
$[H_{____} - 12.348018]_{_____} - 1.588139]_{______} 0.892698$
0.000000 = 0.000000
116
$N_{} - 9.694289_{} - 0.182672_{} 0.000000$
$H_{\rm max} - 9.299638 = 0.824476 = 0.000000$
$_C___\8.403476___\0.960776____0.000000$
$H_{\rm uu} - 10.263389_{\rm uuu} - 0.348152_{\rm uuu} - 0.831048$
$H_{} - 10.263389_{} - 0.348152_{} 0.831048$
$C_{} - 7.316612_{} 0.153002_{} 0.000000$
$H_{\rm constant} - 8.348018 \\ - 1.588139 \\ - 0.892698$
$H_{\rm max} - 8.348018$, -1.588139 , 0.892698
0.00000000000000000000000000000000000
$N_{} - 6.694289_{} - 0.182672_{} 0.000000$
$H_{} - 6.299638_{} 0.824476_{} 0.000000$
$C_{} - 5.403476_{} - 0.960776_{} 0.000000$
$H_{} - 7.263389_{} - 0.348152_{} - 0.831048$

File 17.2: Geometries file. Molden xyz coordinates

$[H_{____} - 7.263389_{____} - 0.348152_{_____} 0.831048$
$C_{}-4.316612_{}0.153002_{}0.0000000$
$H_{} - 5.348018$
$H_{\rm LCC} - 5.348018 = -1.588139 = 0.892698$
0.00000000000000000000000000000000000

Energies File with energies and weights for each geometry listed at *geometries file*. It must be in sync with the *geometries file*. Weights are taken into account when the potential is calculated.

File 17.3: Energies file. Energies and weights

-0.0168817881	
-0.0242428941	
-0.0339813731	

File 17.4: Energies file. Structure

```
energie_of_first_geometry__first_weight
energie_of_second_geometry__second_weight
energie_of_third_geometry_third_weight
....
```

File 17.5: Energies file. Structure of Energies file with auto weights

```
energie_first_geometry__first_weight_auto_tolerance_delta
energie_second_geometry__second_weight_auto_tolerance_delta
energie_third_geometry__third_weight_auto_tolerance_delta
_...
```

- **Atom2type** File to map atom numbers to type numbers. The first line has the required parameters as integer numbers:
 - Number of atoms in *Fragment A*. In this example, 18 (File 17.6).
 - Total number of atoms.

The rest of the lines, three columns, specify:

- Atom number. Atom numbering must follow the order given in the *coordinate file*.
- Atom symbol (two character max).
- Atom type number. A positive integer used as a type index.

From these parameters, all the different interactions are calculated. The total number of interactions is obtained from the number of atoms in *Fragment A* times the number of atoms in *Fragment B*. The coefficients of some interactions are repeated: those that correspond to interactions between atoms of the same type.

So, the number of different interactions is just the different atom types in *Fragment A* multiplied by the number of different atom types in *Fragment B*.

File 17.6: Atom2type. Atom to atom types mapping

_18_116		
1N1		
1		
3C3		
4H2		
5H2		
6C4		
1		
8H5		
9O6		
L		

_AtmFrAAtmTotal
AtomNumber1AtomSymbol1AtomTypeNumber1
$____AtomNumber2____AtomSymbol2____AtomTypeNumber2$
AtomNumber3AtomSymbol3AtomTypeNumber3
$___AtomNumber4____AtomSymbol4____AtomTypeNumber2$
$____AtomNumber5____AtomSymbol5____AtomTypeNumber2$
$____AtomNumber6____AtomSymbol6_____AtomTypeNumber4$
AtomNumber7AtomSymbol7AtomTypeNumber5
AtomNumber8AtomSymbol8AtomTypeNumber5
AtomNumber9AtomSymbol9AtomTypeNumber6

This file can be created with the *needle* tool. See 20.1, page 153.

- **interactions** Here you can select the type of interactions to take into account.
 - inter Only *inter* fragments interactions: Fragment A \times Fragment B interactions.
 - **all** All interactions between atoms: *inter* fragment interactions plus *intra* fragment interactions. To select only the *intra* interactions, use the *atoms2types.txt* file to specify the same number of atoms in the first fragment and the total. See page 129.
 - **number** A user defined number of interactions. You have to write a suitable function to evaluate the coefficients.
- **Charges** This file must include partial charges (in a.u.) for all atoms when potential 4 is selected (see Table 17.2). Partial charges may be specified for atom types (File 17.8 and 17.9).

The types must be the same as those from Atom2type file. See 17.6. It depends on the chosen potential. Note that the type number can be any one, as long as they are different between them.

The file can be generated from *needle*. See 20.1.

File 17.8: Charges. Type to charges mapping

10.027	
2200.113	
$3_{-0.057}$	
4 - 0.01	

____5___0.001 _...

File 17.9: Charges. Structure

AtomType1Charge1	
AtomType2Charge2	
AtomType3Charge3	
AtomType4Charge4	
AtomType5Charge5	
J	,

Potential An integer, that specifies the chosen potential as defined in *potentials.f* file and two options more for setting a potential from source code in FORTRAN.

Value	Coefficients	Potential	
-1	any	any user defined in userpotential.f	
0	any	any analytical expression defined in an [analytical] section	
1	4	$V = Ae^{-Br} + \frac{C}{r^D}$	
2	6	$V = Ae^{-Br} + \frac{C}{r^D} + \frac{E}{r^F}$	
3	8	$V = Ae^{-Br} + \frac{C}{r^D} + \frac{E}{r^F} + \frac{G}{r^H}$	
4	2	$V = A\left[\left(\frac{B}{r}\right)^{12} - \left(\frac{B}{r}\right)^6\right] + 332.0532\frac{q_i q_j}{r}$	

Table 17.2: Potential values

Table 17.2 shows the available potentials in *potentials.f* source file –positive values from table–, where:

 ${\bf r}$ is the distance between the two atoms whose interaction is calculated

332.0532 A conversion factor

A, B, C, D, E, F, G The coefficients to be fitted

 q_i, q_j Charges

All coefficients Drives the reading mode of *Bounds file*. If this variable is not set, it reads a sequence of coefficients for only one interaction, and then, the program assumes all the interactions have the same bounds. If it is set, it reads the bounds for all the coefficients. See Files 15.3,15.4 and 15.5

Fitting Can be absolute or relative (see below).

absolute

$$\sum \left[\left(\mathbf{v}_i - \mathbf{Pot}(i) \right)^2 \ \mathbf{Weight}(i) \right]$$

relative

$$\sum \left[\frac{(\mathbf{v}_i - \mathbf{Pot}(i))^2}{\mathbf{v}_i^2} \, \mathbf{Weight}(i) \right]$$

user this option redirects to a user defined fitting function in the *userpotential.f* file. See 18.1 section.

17.2 Section [print]

This section controls how much is printed.

Geometries This parameter controls if the read geometries are printed on standard output. See 16.

GA settings Prints genetic algorithm settings.

Analytical Prints output from analytical expressions routines.

17.3 Section [analytical]

The reader is referred to Section 18.2, where this is explained in detail.

Intermolecular module: Specifiying a new interaction potential

Simplicity is the ultimate sophistication.

Apple II pc slogan, 1977

18

Besides the interaction potentials implemented in this code -See Table 17.2–, the user can specify a new potential to fit the interaction energies of the system. The new potential can be introduced by:

- adding it in the file *potentials.f*. You have to compile the code.
- modifying the file *userpotential.f* using it as a template. As above, you need to compile the code.
- writing an *analytical expression*. Just write your function, no compile needed but slower execution. Useful for testing new intermolecular functions.

18.1 Modifiying potentials.f and userpotential.f

VGLOBALES fortran module

You can use the variables exported by the *VGLOBALES* module in addition to your own variables from the *USERDATA* module to customize your potential or your fitting function. These are shown in Table 18.1.

Fortran interface subroutines and functions

For an easy customization, some functions and subroutines are provided in addition to the module *VGLOBALES*.

variable	type	dimension	comments
r	double precision	(geometries, natom, natom)	Calculated interatomic distances for all atoms pairs
v	double precision	geometries	Potential energy for each geometry. Read from en- ergies file
w	double precision	geometries	Weights. Read from energies file
wdelta	double precision	geometries	Delta for each weight. Read from energies file
wtol	double precision	geometries	Tolerance. Read from energies file
wtype	integer	geometries	Type of weight. Read from energies file
q	double precision	natom	Charges. Read from charges file.
geometries	integer	-	Number of geometries
nprox	integer	-	Number of atoms in fragment A
nsam	integer	-	Number of atoms in fragment B
natom	integer		Number total of atoms
ptypes	integer	-	Different types of atoms in fragment A
stypes	integer	-	Different types of atoms in fragment B
potential	integer	-	Type of potential
interactions	integer	-	Number of different interactions
intratypes	logical	-	inter and intra interactions
userdefined	logical	-	user defined interactions
coefficients	integer	-	Number of coefficients
charges	logical	-	If charges file is needed
autoweights	logical	-	If autoweights is active
atom	character*2	natom	Two character atom labels

Table 18.1: Module VGLOBALES variables

ix function

The function ix(i,j,k) organizes the different coefficients into the coefficient vector.

- k is the index of a given coefficient, i.e.: k=1 means A, k=2 means B, etc.k ranges from 1 to the number of coefficients
- **i**, **j** are the atoms that define a given interaction for which the coefficients are defined.

There are three cases:

- **inter interactions** Atom **i** belongs to *fragment A* and **j** belongs to *fragment B*. The atoms of *Fragment A* range from 1 to **nprox**, and those of *fragment B* range from **nprox**+1 to **natom**. See also the *needle* tool output, page 154.
- intra + inter interactions Atom i and Atom j are any atom pair.
- **user defined number of interactions** You cannot use *ix* for these types.

coordinates subroutine

The *coordinates(geo,atom,x,y,z)* subroutine can access the Cartesian coordinates.

geo is the geometry index, ranging from 1 to geometries

atom the atom index in the geometry, ranging from 1 to natom

x, **y**, **z** the coordinates returned by subroutine.

Adding a new potential to potentials.f

Introducing a new potential in the program implies to implement it into *potentials.f* –File 18.1–, to modify **setcoefs** (line 3), **getcharges** (line 28), **potRouter** (line 51) and **curRouter** (line 74) functions, and to write the corresponding potential functions. Finally, the program has to be recompiled.

File 18.1: potentials.f

```
1 c POTENTIALS
2 c sets the number of coefs required by potential
3 <mark>C</mark>
         integer function setcoefs(potential)
4
         implicit none
5
         integer potential
6
         integer angetncoefs
7
         integer usetcoefs
8
         external angetncoefs
9
         if (potential .eq. -1) then
10
11
           setcoefs=usetcoefs()
12
         else if (potential .eq. 0) then
           setcoefs=angetncoefs()
13
14
         else if (potential .eq. 1) then
           setcoefs=4
15
16
         else if (potential .eq. 2) then
17
           setcoefs=6
         else if (potential .eq. 3) then
18
19
           setcoefs=8
20
         else if (potential.eq.4) then
           setcoefs=2
21
22
         else
           stop 'setcoefs:_not_implemented'
23
         endif
24
25
         end
26
  c if a charge file is needed
27
  с
28
         logical function getcharges(potential)
29
30
         implicit none
31
         integer potential
         logical ugetcharges
32
33
         if (potential .eq. -1) then
           getcharges=ugetcharges()
34
35
         else if (potential .eq. 0) then
           getcharges = . false.
36
         else if (potential .eq. 1) then
37
38
           getcharges =. false.
         else if (potential .eq. 2) then
39
           getcharges =. false.
40
         else if (potential .eq. 3) then
41
           getcharges =. false.
42
         else if (potential.eq.4) then
43
          getcharges =. true.
44
45
         else
46
           stop
                'getcharges: _not_implemented'
47
         endif
         end
48
49
50 c Potential Router, route calculations to the desired potential
51 C
         subroutine potRouter(geo,x,nmax,vpot)
52
```

```
53
          use vglobales
54
          integer nmax, geo
55
          double precision vpot, x(nmax)
          if (potential .eq. -1) then
56
57
            call userpot(geo,x,nmax,vpot)
58
          else if (potential .eq. 0) then
            call pot0(geo,x,nmax,vpot)
59
60
          else if (potential .eq. 1) then
            call pot1(geo,x,nmax,vpot)
61
          else if (potential .eq. 2)then
62
            call pot2(geo,x,nmax,vpot)
63
          else if (potential .eq. 3) then
64
65
            call pot3(geo,x,nmax,vpot)
66
          else if (potential .eq.4) then
            call pot4(geo,x,nmax,vpot)
67
68
          else
69
           stop 'not_implemented_potential'
          endif
70
71
          end
72
   c Curve Router, route calculations to the desired potential
73
74 C
         subroutine curRouter(d, atom1, atom2, x, nmax, vpot)
75
76
          use vglobales
77
          integer nmax, atom1, atom2, index
          double precision vpot, x(nmax),d
78
          double precision analytical, userv, v1, v2, v3, v4
79
          integer ix
80
81
          if (potential .eq. -1) then
            vpot=userv(d,atom1,atom2,x,nmax)
82
          else if (potential .eq. 0) then
83
84
            index=ix(atom1, atom2, 1)
            vpot=analytical(d, index, x)
85
          else if (potential .eq. 1) then
86
87
            vpot=V1(d,atom1,atom2,x,nmax)
          else if (potential .eq. 2)then
88
            vpot=V2(d,atom1,atom2,x,nmax)
89
90
          else if (potential .eq. 3) then
            vpot=V3(d,atom1,atom2,x,nmax)
91
92
          else if (potential .eq.4) then
93
            vpot=V4(d, atom1, atom2, x, nmax, q(atom1), q(atom2))
          else
94
95
            stop 'not_implemented_potential'
96
          endif
97
         end
98
99 c Now, each potential calculation down from here.
100
101 C
                  -analytical-
         subroutine pot0(geo,x,nmax,vpot)
102
103
          use vglobales
          integer nmax, geo, i, j, k, index
104
105
          double precision d, vpot, analytical
          external analytical
106
         double precision X(nmax)
107
108
         integer ix
          vpot=0.0d0
109
          do i=1,nprox
110
111
           do j=1,nsam
112
           k=j+nprox
113
           d=r(geo,i,k)
           index=ix(i,k,1)
114
```

```
vpot=vpot+analytical(d, index, x)
115
            enddo
116
117
           enddo
118
           return
119
           end
120
121 C
           1-
           subroutine pot1(geo,x,nmax,vpot)
122
123
           use vglobales
           integer nmax,geo,i,j,k
124
125
           double precision d, vpot, V1
           double precision X(nmax)
vpot=0.0d0
126
127
128
           do i=1,nprox
            do j=1,nsam
129
130
            k=j+nprox
            d=r(geo,i,k)
131
            vpot=vpot+V1(d,i,k,x,nmax)
132
133
            enddo
           enddo
134
135
           return
136
           end
137
          FUNCTION V1(r, i, j, x, m)
138
139
           implicit none
           integer i, j, m, ix
140
141
           dimension x(m)
142
           double precision x,r,a,b,c,d,v1
143
           A=x(ix(i,j,1))
           B=x(ix(i, j, 2))
144
           C=x(ix(i,j,3))
145
146
          D=x(ix(i, j, 4))
          V1=A*EXP(-B*R)+C/R**D
147
          REIURN
148
149
          END
150
151
   С
152
           subroutine pot2(geo,x,nmax,vpot)
           use vglobales
153
154
           integer nmax, geo, i, j, k
           double precision d, vpot, V2
155
           double precision X(nmax)
156
           vpot=0.0d0
157
           do i=1,nprox
158
            do j=1,nsam
159
160
            k=j+nprox
            d=r(geo, i, k)
161
            vpot=vpot+V2(d, i, k, x, nmax)
162
            enddo
163
           enddo
164
165
           return
           end
166
167
168
          FUNCTION V2(r, i, j, x, m)
           implicit none
169
170
           integer i,j,m,ix
171
           dimension x(m)
           double precision x,r,a,b,c,d,e,f,v2
172
173
           A=x(ix(i,j,1))
           B=x(ix(i,j,2))
174
           C=x(ix(i,j,3))
175
176
          D=x(ix(i,j,4))
```

```
177
          E=x(ix(i,j,5))
          F=x(ix(i,j,6))
V2=A*EXP(-B*R)+C/R**D+E/R**F
178
179
          RETURN
180
          END
181
182
183
184 C
          3-
          subroutine pot3(geo,x,nmax,vpot)
185
           use vglobales
186
187
           integer nmax, geo, i, j, k
          double precision d, vpot, V3
188
           double precision X(nmax)
189
190
           vpot=0.0d0
          do i=1,nprox
191
           do j=1,nsam
192
193
            k=j+nprox
            d=r(geo,i,k)
194
195
            vpot=vpot+V3(d, i, k, x, nmax)
            enddo
196
          enddo
197
198
          return
          end
199
200
          FUNCTION V3(r, i, j, x, m)
201
          implicit none
202
203
          integer i, j, m, ix
204
          dimension x(m)
205
          double precision x,r,a,b,c,d,e,f,g,h,v3
          A=x(ix(i,j,1))
206
          B=x(ix(i,j,2))
207
          C=x(ix(i,j,3))
208
          D=x(ix(i,j,4))
209
210
          E=x(ix(i,j,5))
211
          F=x(ix(i,j,6))
212
          G=x(ix(i,j,7))
213
          H=x(ix(i,j,8))
214
          V3=A*EXP(-B*R)+C/R**D+E/R**F+G/R**H
          REIURN
215
          END
216
217
          4
218 C
          subroutine pot4(geo,x,nmax,vpot)
219
          use vglobales
220
          integer nmax, geo, i, j, k
221
222
          double precision d, vpot, V4
          double precision X(nmax)
vpot=0.0d0
223
224
          do i=1,nprox
225
           do j=1,nsam
226
227
            k=j+nprox
228
            d=r(geo,i,k)
            vpot=vpot+V4(d, i, k, x, nmax, q(i), q(j))
229
230
           enddo
          enddo
231
232
          return
233
          end
234
235
          FUNCTION V4(r, i, j, x, m, qi, qj)
          implicit none
236
          integer i,j,m,ix
237
238
          dimension x(m)
```

```
      239
      double precision x,r,a,b

      240
      double precision v4,qi,qj

      241
      A=x(ix(i,j,1))

      242
      B=x(ix(i,j,2))

      243
      V4=A*((B/R)**12-(B/R)**6)+qi*qj/R*332.0532d0

      244
      REIURN

      245
      END
```

setcoefs returns the number of coefficients used per potential.

getcharges returns true if the formula needs the charges file, if not false.

potRouter selects the function to calculate.

curRouter is used by fitview to plot two body interactions.

Some other variables are loaded into functions via the **use** statement or they are available via interface functions or subroutines –see 18.1–.


Changing userpotential.f

The user potential file is a template. Using *potential=-1* in the **[job]** section, the program understands that it has to employ this file. The included template (File 18.2) contains, as an example, potential number 1 (see 17.2 table). To implement a new potential function you only have to:

- change line number 34, the number of coefficients.
- change line 44 if the charges file is needed.
- change lines from 86 to 91 to code the potential formula.
- additionally, you can specify here a *user fitting function* –page 132–.
- if you need to share or load some variables, you can use the **USER-DATA** module.

You can use the **function ix** (see page 134) to access individual coefficients or use the **subroutine coordinates** to access individual atom coordinates.

File 18.2: userpotential.f


```
15
16
17 c USERREAD SUBROUTINE
18

    subroutine
    userread()

    20
    use
    userdata

    21
    c
    v
    CHANGE-ME

                        22 c your code to read external files here
23
24
           25 c ^__
26
       end
27
28
29 C USETCOEFS FUNCTION
30
31
       integer function usetcoefs()
32 c here specify the number of coefficients
33 c v ______ CHANGE ME ______ v
33 c v—
       usetcoefs=4
34
35 c ^__
        36
        end
37
38
39 c UGETCHARGES FUNCTION
40
41
        logical function ugetcharges()
43 c v—
        ugetcharges =. false.
44
45 c 🔨
        end
46
47
48 c USERPOT SUBROUTINE
49
        subroutine userpot(geo,x,nmax,vpot)
50
51
        use vglobales
52 <mark>C</mark> –
53 c to use your external data
54
       use userdata
55 <mark>C</mark> -
     integer nmax,geo,i,j,k
56
57
        double precision d, vpot, userv
       double precision X(nmax)
58
59 c v—
            -CH
                  E-ME-IF-NEEDED-
                                         ___v
        vpot=0.0d0
60
61 c note: here all interactions are calculated
       do i=1,nprox
62
         do j=1, nsam
63
        k=j+nprox
64
65
         d=r(geo,i,k)
66
        vpot=vpot+userv(d,i,k,x,nmax)
        enddo
67
       enddo
68
69 c ^____CHANGE-ME-IF-NEEDED____^
70 return
71
        end
72
73
74 c FUNCTION USER POTENTIAL
75 c write userv using ix function to access
76 c individual coefficients.
```

```
77 c use CALL coordinates (geometry, atom, x, y, z)
78 c to access individual coordinates
79
          double precision FUNCTION userv(r,i,j,x,m)
80
          implicit none
81
82
          integer i, j, m, ix
         dimension x(m)
83
84 c note: here ONE interaction is calculated
             -CHANGE-ME
85 C V-
         double precision x,r,a,b,c,d
86
         A=x(ix(i,j,1))
87
         B=x(ix(i,j,2))
88
89
         C=x(ix(i,j,3))
90
         D=x(ix(i, j, 4))
         userv=A*EXP(-B*R)+C/R**D
91
92
         REIURN
93
         END
94
95
96
97
   c USER FITTING FUNCTION
98
      write here the user fitting function
      if you only need the fitting function
99 C
100 C
      leave the line "call potRouter..." unchanged
101 C
      and change the line "userfitting = ... " with your
      fitting function
102 C
      if you have a userv function (above this), you can
103 C
104 C
      use it here, or access it via potRouter
105
          double precision function userfitting(x,m,geo)
106
          use vglobales
107
108
          use userdata
          double precision x, vpot
109
110
          integer m, geo
111
          dimension x(m)
112
   с
113
          call potRouter(geo, x, m, vpot)
114
          userfitting =(v(geo)-vpot)*(v(geo)-vpot)
115
116
         return
117
         end
```

The subroutine *userread* is called after reading the job settings and associated data, so it can be used to load data to the *userdata module* for later use in the user potential function or subroutine (*userv* or *userpot*). A complete example can be found in the folder *n2n2-example*.

In order to use **fitview** to plot two body interactions you need to provide **curRouter** with a function capable of calculate the potential using the atom pair, the distance between them and the coefficients as arguments.

18.2 Analytical expression

If you do not want to write code, the potential function can be introduced as an **analytical expression** just by writing an *analytic expression* or *analytic formulae* in a file. Note that an **analytical expression** runs about ten times slower compared with the above compiled version.

The *analytical expression* introduced by the user must be checked, compiled to intermediate code, and finally, run in a virtual **FPU** with the correct variables loaded. The number of coefficients per interaction is automatically counted from the expression.

First of all, you have to select *potential*: 0 in the **[job]** section, and a mandatory **[analytical]** section must be fulfilled with each of its parameters. The table 18.2 shows and explains them.

Section	Parameter	Туре	comments
analytical			
	expression	string	Specifies a whole section where the expression is defined
	potential	string	Variable used for potential
	distance	string	Variable used for distance between atoms
	coefficients	string	Comma-separated value lists of coef- ficients used in expression. These, taking in account interactions, build the vector optimized by GAFit

Table 18.2: Analyltical potential parameters

An example can be seen in File 18.3. It also shows different forms to express the potential.

As you see in File 18.3, "potential 5" is selected so the section [potential 5] contains the expression to be calculated.

The **distance** variable is named "dist", and **potential** "pot". The **coef-ficients** are: "aaa", "bbb", "c1", "c2", "d1", "d2", "e1" and "e2".

The expression is divided in five parts, using intermediate variables "v1", "v2", "v3" and "v4" to hold partial calculations. These variables are automatically defined by the compiler algorithm. In fact, this potential is *number 3 standard potential* defined in table 17.2.

The section **[potential 3]** shows a different way to use the same potential. Section **[potential 1]** and **[potential 2]** are the first and second standard potentials from table 17.2.

File 18.3: job.txt. Analytical expression options

Operators and functions supported in expressions are shown in table 18.3. Note that a^b can be input as "a * *b", "a^b" or "pow(a,b)"¹.

Defining constants and using floating point notation is also supported as shown in File 18.3, section [potential 3].

To check your potential definition you can use **ufpu**. See 20.3.

¹Like fortran, basic or C languages, respectively

Operators		Precedence	Example
=	assignment	0	a=b
+	addition	1	a+b
-	subtraction	1	a-b
*	multiplication	2	a∗b
/	division	2	a/b
unary +	unary plus	3	+a
unary -	unary minus	3	- a
* *	a raised by power b, a^b	4	a**b
^	a raised by power b, a^b	4	a^b
Puntuaction			
()	change precedence		(a+b)*c
,	comma, separate argu-		pow(a,b)
	ments in functions		
;	semicolon, separate in-		a=b+c; d=e+f
	dividual expressions		
Functions			
exp	number e raised by		exp(a)
	power a, e^a		
pow	a raised by power b, a^b		pow(a,b)
\sin	sine of a (in radians),		sin(a)
	$\sin(a)$		
cos	cosine of a (in radians),		$\cos(a)$
	$\cos(a)$		

Table 18.3: Operators and functions supported in expressions

19

Intermolecular module: Fpu simulator

Сколько языков ты знаешь - столько раз ты человек..

А.П.Чехов

19.1 Fpu overview

Figure 19.1: uCompiler compiles the expression into fpu machine code.

Fpu is a function that emulates a Floating Point Unit (FPU) with its own instruction set in order to calculate *analytical expressions*. A related function, **uCompiler**, compile each source expression to **fpu** machine bytecode –Figure 19.1–, so it can be executed by a **Fpu** instance –Figure 19.2–.

Source code is included in the folders *fpu*, *compiler*, *pack*, *bytecodes* and *nullist*. A complete implementation is the **ufpu** tool. See Section 20.3.

Figure 19.3 shows a **Fpu** overview. It contains:

address stack used to operate, like to a real CPU stack pointer.

memory pool an array referencing each allocated double, always growing up. There is no mechanism to resize down allocated memory, except resetting or deleting the **Fpu** from memory. It is like a real CPU stack.

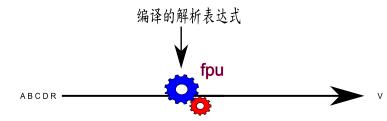


Figure 19.2: **Fpu** load the machine code and process the variables to obtain V value.

Table 19.1: Fpu source code

Folder	Comments
fpu	implements the Fpu function
compiler pack	implements the bytecode compiler bytecode packaging (as file or in memory)
bytecodes nullist	i i

program counter memory address pointing to the instruction to be processed, like a real CPU program counter.

status flags register which is set on error like a real CPU flags.

program A continuous memory block containing the loaded program opcodes. The *data* and the *program code* does not share the same "memory", so conceptually this is a virtual machine with a *Harvard* architecture¹.

The supported instruction set is shown in table 19.2.

19.2 Mode of operation

A program example is shown in File 19.2, which is generated using the *job.txt* file configuration 19.1. Semicolons are interpreted as comments.

File 19.1: Job.txt to generate the File 19.2

```
[analytical]
expression:_potential_1
distance:_r
potential:_v
coefficients:_a,_b,_c,_d
[potential_1]
V=A*EXP(-B*R)+C/R**D;
```

 1 The opposite is the *von Neumann*'s architecture where data and program code are loaded in the same memory. This is the most widely used if not the unique.

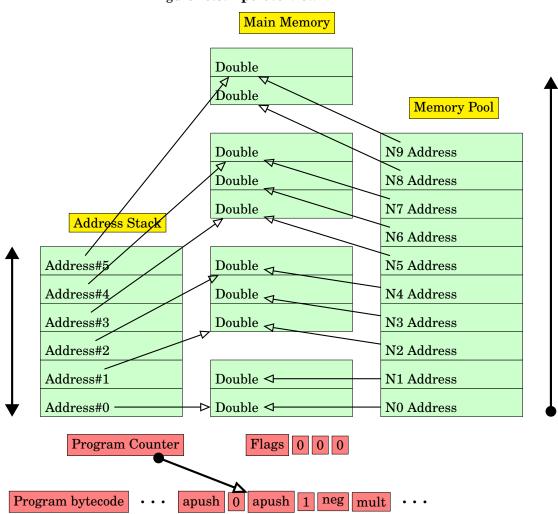
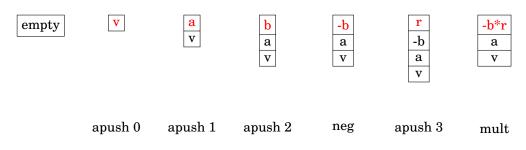


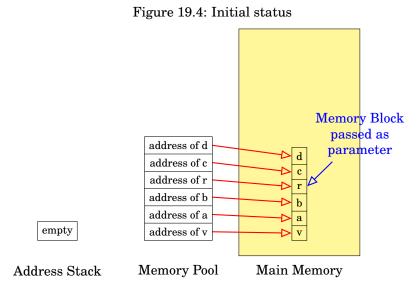
Figure 19.3: **Fpu** overview

Table 19.2: Fpu instruction	\mathbf{set}
-----------------------------	----------------

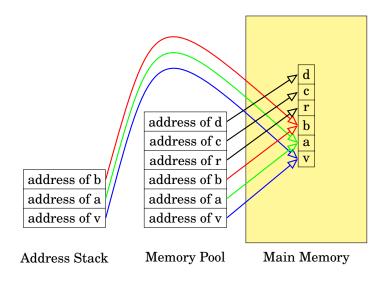

		<u> </u>
Instruction	Parameters	Comments
NOP		No operation
APUSH	Ν	pushes address of <i>memory pool</i> N onto <i>stack</i>
PUSH	А	allocates memory for value A incrementing <i>memory pool</i> , and pushes its address onto <i>stack</i>
POP		pops from <i>stack</i>
MOVE	Ν	copies top of stack value to N^{th} memory pool reference and leaves <i>stack</i> unchanged
STORE		moves value of <i>top of stack</i> to allocation referenced by <i>top of stack</i> - 1. Pops both addresses from <i>stack</i>
CLRF		clears status flags
ADD		adds two top most referenced values of stack, pops both from <i>stack</i> , and allocates memory for result pushing its address onto it
SUB		same as add but substracting
MULT		same as add but multiplicating
DIV		same as add but dividing
NEG		pops out top of stack reference, allocating memory for its negated value and pushing onto it
POW		raises power of the two top most values of stack popping them, allocates memory for result and pushes onto it
EXP		allocates memory for the result of $e^{topmoststack}$, pops the top most stack references, and pushes onto it the result reference
SIN		allocates memory for the result of $sin(topmoststack)$, pops the top most stack references, and pushes onto it the result reference
COS		allocates memory for the result of $cos(topmoststack)$, pops the top most stack references, and pushes onto it the result reference

File 19.2: Bytecode source example

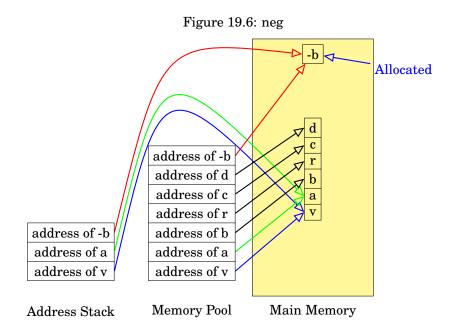
_;_v:0	
_;_a:1	
_;_b:2	
_;_r:3	
_;_c:4	
_;_d:5	
_apush_0	
_apush_1	
_apush_2	
_neg	
_apush_3	
_mult	
_exp	
_mult	
_apush_4	
_apush_3	
_apush_5	
_pow	
div	
_add	
store	

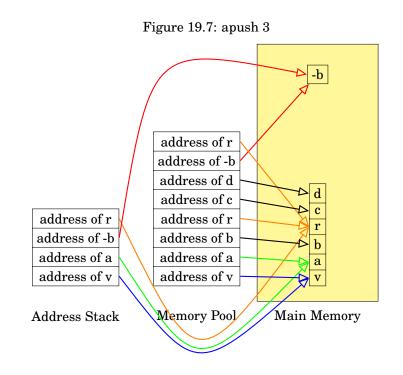

As shown in File 19.2, a memory block must be passed to **Fpu** containing the variables v, a, b, r, c, d in the correct order, as it could be seen in

the first lines of the file –comments which are generated by the compiler as a remark–. At this time, the *Address Stack* is empty, so v, a and b are pushed.


Next, the value of the top of the stack is negated (-b). r is pushed and multiplied by -b, so on top of the stack we have -b * r.

The e^{-br} is calculated and multiplied by a leaving it in the top of stack again.




From the memory management point of view, the first six operations from File 19.2 are shown in figures 19.4 to 19.8. A memory block with the program variables is passed to **Fpu**.

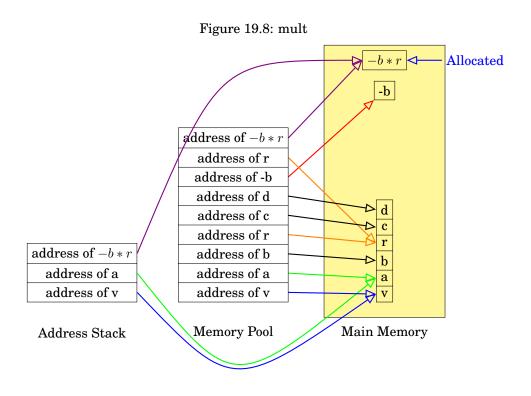

New intermediate results generate new allocations of memory, all of them are taken into account by the *Memory Pool* array, which always grows. At the end, all of them are freed except the initial memory block with the initial variables returned to the caller.

Figure 19.5: apush 0, apush 1, apush 2

Intermolecular module: Tools

Contrary to popular belief, Unix is user friendly. It just happens to be very selective about who it decides to make friends with.

Anonymous

20.1 needle

needle is a perl script used to distinguish different types of atoms, which are needed to calculate the different types of interactions between Fragment A and Fragment B.

The atoms considered are: F, H, Si, O, N, S, C and Au. If any atom is different from those, it must be previously coded.

```
$ needle -p 18 moldeni.dat
needle v0.5 (c)GAFit toolkit - 2010-2013
collects sets of equivalent atoms
input: any geometries input file
Number(Atom)
1. 1(N)
2. 2(H) 4(H) 5(H)
3. 3(C)
4. 6(C)
5. 7(H) 8(H)
6. 9(O)
7. 10(N)
8. 11(H)
9. 12(C)
```

```
10. 13(C)
11. 14(H) 15(H)
12. 16(0)
13. 17(0)
14. 18(H)
15. 19(C) 22(C) 33(C) ...
16. 20(C) 21(C) 34(C) ...
17. 23(F) 24(F) 29(F) ...
18. 25(F) 26(F) 27(F) ...
Results:
245
2 4 5

3

6

7 8

9

10

11

12

13

14 15

16
16
17
 18
19 22 33 ...
20 21 34 ...
23 24 29 ...
25 26 27 ...
Fragment A atoms:18
 There are 18 different atom types. Fragment A:14, Fragment B:4, Common types:0
 Total diff interactions: a vector of 56 coefs, X(k)
Vector Atom2Type:
Atom2Type(i)={1 2 3 2 2 4 ... 17 17 17 17 }
```

Options:

-d Debug output.

- -p N Indicates the number of atoms into fragment A, required if -o is used.
- -o Creates output files: *atom2type.txt* and *charges.txt* as a template to be modified as desired. Note that *charges.txt* assigns a dummy value of 0 to each type of atom, therefore the file must be manually edited. See 17.1.

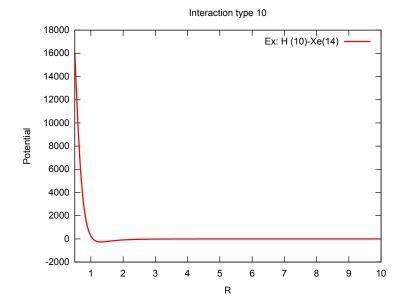
Notice that *needle* only reads the first molden geometry in the file, so its input can be the *geometries* file used for the job.

The algorithm used in *needle* is not bulletproof, so pay special attention to the *atom2type.txt* file.

20.2 fitview

An utility to write and plot data from results. **fitview** generates two files per plot, one contains the data (*file.dat*) and the other (*file.plt*) the **gnuplot**¹ commands to print out the plot. So to plot, you can type:

\$gnuplot file.plt


The plots produced by fitview are one per two body interaction, a general evaluation including all geometries found in the geometry file and all the two body interactions in the same plot for a quick look:

¹Home page: http://www.gnuplot.info/. **Gnuplot** is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, OSX, VMS, and many other platforms.

- general_evaluation.plt
- general_evaluation.dat
- 2body-type-1.dat
- 2body-type-1.plt
- 2body-type-2.dat
- 2body-type-2.plt
- ...
- 2body-type-n.dat
- 2body-type-n.plt
- 2body-type-all.plt

In the command line you can specify the *lower* and *upper bound*, the increment *delta* and whether your local version of **gnuplot** supports the *enhanced* terminal to print the subscripts needed for the data labels.

Figure 20.1: Two body interaction example plot.

fitview loads the *best.txt* coefficients and honors the job configuration found in the current working directory using the *job.txt* file therein.

If a **tag** is included in the command line, it processes the *best.tag.txt* and the output files overwrites the previous ones. Note that the result file names do not change.

In case of an *external potential*, **fitview** refuses to run. Take special care using a potential of your own: See 18.1.

20.3 ufpu

An utility to test analytical expressions configuration, following the next steps:

- ufpu searches the *job file* in the current working directory for an [analytical] section².
- 2. Checks and validates the expression if found.
- 3. Compiles generating two files: *prog.uxe* and *prog.usm*, and extracts the variables to be used. *prog.uxe* is the packed bytecode result of compilation. *prog.usm* is the result assembler for the same expression.
- 4. Loads the *prog.uxe* file.
- 5. Asks for each variable.
- 6. Runs and shows the results.
- 7. Resets and goes to 5

The analytical subroutines do the same. At **GAFit** initialization, performs the steps from 1 through 4.

Each time a potential calculation is requested, it loads the Fpu with the appropriate values in a memory block, runs it, extracts the result and resets again the Fpu. See 19.

The output shown was generated using File 18.3.

```
uFpu v0.2 (c)GAFit toolkit - 2013
expression name: "potential 5"
potential:
                    pot
distance:
coefficients:
                      dist
                     aaa, bbb, c1, c2, d1, d2, e1, e2
Expression found:
          vl = aaa * exp (
                                    -bbb * dist ) ;
          v1 = aaa * exp ( -bbb * dist
v2 = c1 / pow ( dist , c2 );
v3 = d1 / dist ** d2;
v4 = e1 / dist ^ e2;
pot = v1 + v2 + v3 + v4
          Variables found in expression: v1 aaa bbb dist v2 c1 c2 v3 d1 d2 v4 e1 e2 pot
          Expression code OK
          pot index 13
           dist index 3
           8 coefficients found
INPUT
```

²Regardless the potential value in the [job] section.

distance variable (dist)=1 coefficient aa=1 coefficient bbb=1 coefficient cl=1 coefficient c2=1 coefficient d2=1 coefficient e1=1 coefficient e2=1 After run: Memory (total used 27) v1=0.367879 aaa=1.000000 bbb=1.000000 dist=1.000000 v2=1.000000 c1=1.000000 c2=1.000000 v3=1.000000 d1=1.000000 d2=1.000000 v4=1.000000 e1=1.000000 e2=1.000000 pot=3.367879 RESULT POTENTIAL:3.367879 Press 'q'/INTRO to quit, another key/INTRO to repeat

21

MOPAC module

To err is human, but to really screw things up you need a computer.

Bill Vaughn

An additional feature of **GAFit** is the possibility of parametrizing a semiempirical Hamiltonian. The current version of **GAFit** supports MOPAC –from 2009 to 2016– as the external program to compute the PES of our system. In the example given in Section 12 the MOPAC interface is used to parametrize the intramolecular PES of vinyl cyanide.

The details of how **GAFit** works with an external program–or external potential– are explained in the following.

21.1 External potential

The *external potential* works as follows:

- **GAFit** generates a whole generation, where each individual is a coefficient vector.
- for each individual,
 - the coefficients are written in the file named in the **external input** option of the **[job]** section.
 - the external program specified in the option **command** is run.
 - * The external program must read the external input file,
 - * doing its calculations,
 - * and writing the file named in the **external fit** option of the **[job]**.
 - GAFit reads the external fit file.

• **GAFit** using the *fit*, given by the external program, applies the genetic operators to create a new generation.

If the *bulk* option is chosen, an entire generation is written to the **external input** file, and the external **command** must write into the **external fit** file all the individuals fitting values. This option speeds up calculations.

In all cases, the **command** is executed passing one argument in the command line: the number of the individuals that were written to the **external input** file.

For example, if the **command** is *mopac2009.sh*, and the job is an **ex-ternal bulk** passing an entire generation of 100 coefficient vectors, the command line executed by the shell is:

\$ mopac2009.sh 100

external input examples are given in Files 15.8 and 15.9. **external fit** examples are the Files 15.10 and 15.11

GAFit only evaluates if there is a command processor available –i.e. *sh*– and the **coefficients** value. No other checks are performed.

Autoconfigure

If the option *external auto* is chosen, the external command can configure **GAFit**. At the beginning, **GAFit** executes the external command passing an argument of "0". If the external command is *mopac2009.sh*, the command line executed by the shell is:

\$ mopac2009.sh 0

The external command must answer with a file named "*response*" with the options requested. This file follows the *job.txt* format. An example from the **MOPAC** interface is shown below.

[job]
type:_external_bulk
coefficients:_16
external_input:_mopac.input
external_fit:_mopac.fit
bounds: _bounds.txt
[coefficient_names]
BETAS_H
ZS_H
ALP_H
GSS_H
USS_C
UPP_C
BETAS_C
BETAP_C
ZS_C
ZP_C
ALP_C
GSS_C
GSP_C

File 21.1: response

GPP_C GP2_C HSP_C	GPP_C		
HSP_C	GP2_C		
	HSP_C		

Note that **GAFit** does not check if there is a *response* file before the call. All is ok if it finds one, independently of whether it has been created by the system call or not.

Stopping an external job

You can stop a running job writing a **stop file** in the folder where it is running. The **stop file**'s name is **__STOP__**, and the text it contains is whatever you want.

\$ echo ``stop job''> __STOP__

A first approach to the general problem of launching an external program is shown as a guideline for development to complement section 21.1 with a useful case: MOPAC 2009.

Later, a better solution **-shepherd**-, specifically designed to solve some problems found while testing these scripts, is developed and discussed in Section 22.

21.2 Interfacing with MOPAC 2009

Interfacing with MOPAC 2009 is achieved using three new tools:

injector Written in C, is responsible for:

- answering the GAFit external auto configuration option.
- creating the MOPAC's external file parameters.
- creating the MOPAC's input file.

extractor Written in **perl** and using **perl**'s special characteristics to extract text, it is in charge of:

- extracting and digesting data from the MOPAC output to a intermediate file with a format for easy retrieve by the next tool.
- dealing with MOPAC's calculation failures.

fitter Written in fortran,

- calculates the fitting.
- writes the file with the fits to be read by GAFit.

Two templates are used to create the files needed by MOPAC 2009.

coefficients template (**COEFS_TEMPLATE**) is used to extract the coefficients values and replace them with the ones obtained by **GAFit** and to count and assign names to **GAFit** coefficients too.

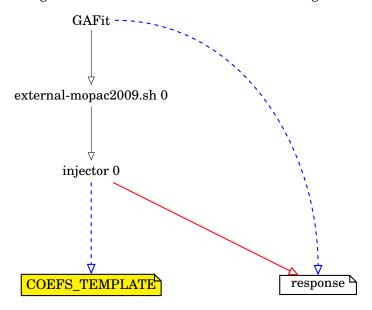


Figure 21.2: MOPAC 2009 interface: autoconfigure

MOPAC calculation template (**MOPAC_TEMPLATE**), contains one or more calculations. For example: one for the reactants, one for the TS and a third one for the products (calculations 1, 2 and 3 respectively).

It is used to generate a continuous and unique file with all calculations, which is employed as input of MOPAC 2009. There are places, marked with an @, where the symbol is replaced by the file name of the *coefficients template*, containing the coefficients obtained by **GAFit**.

If there are two calculations in the **MOPAC** calculation template and **GAFit** exports 100 sets of coefficients per generation, then the unique file generated contains 200 calculations, and also, there are 100 independent files generated from the *coefficients template*, each one with a complete set of coefficients replaced.

These files are named A ... Z, AA ... AZ ... and so on.

Figures 21.1 and 21.2 show the relations between programs and files:

- Dashed blue lines indicate that a tool uses the file as input.
- **red** lines indicates that a tool creates the file.
- | black | lines indicate calls to execute a tool.
- Files filled in **yellow** indicate that they must be created or given by the user.

There are environmental variables, shown in Table 21.1, which can be set to control the file names.

Notice that for the **fitter** point of view, **EXTERNAL_FIT** and **EXTRA CTED_DATA** are command line arguments.

Variable	Default value	Tools
COEFS_TEMPLATE	template.coefs	injector
MOPAC_TEMPLATE	template.mop	injector
MOPAC_MOP	mopac_input.mop	injector, MOPAC 2009, extrac-
		tor, shepherd
EXTERNAL_INPUT	mopac.input	GAFit, injector
EXTERNAL_FIT	mopac.fit	GAFit
EXTRACTED_DATA	extracted.data	extractor
BOUNDS_FILE	bounds.txt	GAFit, injector

21.3 External command

GAFit only calls an external shell script: *external-mopac2009.sh*, or the name given in job.txt. There is a complete example in the folder *mopacexample* which can be examined in the File 21.2. A minimal implementation due to the defaults could be the one in File 21.4.

	1	#!/bin/sh
	2	export MOPAC_LICENSE=\$HOME/mopac2009
	3	
	4	<pre>export COEFS_TEMPLATE="template.coefs"</pre>
	5	<pre>export MOPAC_TEMPLATE="template.mop"</pre>
	6	<pre>export MOPAC_MOP="mopac_input.mop"</pre>
	7	<pre>export EXTERNAL_INPUT="mopac.input"</pre>
	8	export EXTERNAL_FIT="mopac.fit"
	9	export EXTRACTED_DATA="extracted.data"
	10	export BOUNDS_FILE="bounds.txt"
	11	
	12	injector \$1
	13	if ["\$1" -ne "0"]
	14	then
	15	\$MOPAC_LICENSE/MOPAC2009.exe \$MOPAC_MOP
	16	extractor \$1
	17	fitter \$1 \$EXTRACTED_DATA \$EXTERNAL_FIT
	18	fi
i		

21.4 injector

injector is a program written in C. The syntax is

injector number-of-vectors [bulk]

where number-of-vectors and bulk are parameters explained below.

Configuration

If the *external auto* option is used, **GAFit** calls the *external command* passing a "0" as first parameter, so the **injector** creates the file *response* and

GAFit uses this information to configure itself. This file is deleted the first time **injector** runs in the normal operation.

File 21.3: job.txt in mopac-example
[parameters]
$population: \longrightarrow 100$
$crossover_rate \Rightarrow 0.75$
blx_alpha:
mutation_rate: $\rightarrow_0 0.1$
elitism:yes
tournament_size:_5
crossover:sbx
mutation:sigma
sigma: $\rightarrow $
direction:
[job]
$\operatorname{runs}: \longrightarrow \longrightarrow 1$
$evaluations: \longrightarrow 5000$
type:external_auto
command:external_mopac2009.sh
[print]
print_runs:_yes

File 21.3: job.txt in mopac-example

The data needed to create the *response* file is obtained from environmental variables and from the **COEFS_TEMPLATE** file¹. If it is not set, there are default values for them (see Table 21.1).

A minimal external script is shown in File 21.4. In this case, the *external auto* option defaults to *external*. To override defaults use *bulk* option to change to *external bulk*.

File 21.4: Minimal external-mopac2009.sh

```
1 #!/bin/sh
2 export MOPAC_LICENSE=$HOME/mopac2009
3
4 export MOPAC_MOP="mopac_input.mop"
5
6 injector $1
7 if [ "$1" -ne "0" ]
8 then
9 $MOPAC_LICENSE/MOPAC2009.exe $MOPAC_MOP
10 extractor $1
11 fitter $1
12 fi
```

Normal operation

If the parameter is not "0", it must be the number of coefficient vectors, which are written in the file **EXTERNAL_INPUT**.

The injector reads **EXTERNAL_INPUT** and using **COEFS_TEMPL ATE** and **MOPAC_TEMPLATE** it creates the **MOPAC_MOP** file and its relative external coefficients files, which are named according to the default option for the coefficients names. See 15.4.

¹Number and name of the coefficients.

$BETAS_H_6.173787$
$ZS_{}H_{$
ALPH2.882324
GSS_H12.848
$USS_C_=-52.028658$
$UPP_{}C_{} - 39.614239$
$BETAS_C_{-15.715783}$
BETAP_C7.719283
$ZS_{}C_{$
$ZP_{}C_{$
ALP_{C}
$GSS_C_1 12.23$
$GSP_{\cup}C_{\cup}_{\cup}11.47$
$GPP_{\Box}C_{\Box} = 11.08$
$GP2_{\Box}C_{\Box} = 9.84$
$HSP_{\cup \cup \cup \cup \cup \cup \cup} 2.43$

File 21.5: COEFS_TEMPLATE file: template.coefs

At the configuration stage, the file **COEFS_TEMPLATE** is analyzed; this file provides the number of coefficients and their names.

In a normal operation, the file is replicated to generate the files needed to complement the jobs in **MOPAC_TEMPLATE**.

File 21.6: MOPAC_	TEMPLATE file:	template.mop
-------------------	----------------	--------------

AM1_precise_external=@_geo-ok_nosym
H0.00000000+00.0000000_+00.0000000_+02
$\zeta_{0.1275}$
$ = C_{$
$\zeta_{1,0}$,,, -0.1565
$C_{2}C_{2} = 1.33416836_{+1} = 123.1900576_{+1} = 0.0000000_{+0} = 0.0000000_{+0} = 0.000000_{+0} = 0.000000_{+0} = 0.000000_{+0} = 0.000000_{+0} = 0.000000_{+0} = 0.000000_{+0} = 0.0000000_{+0} = 0.0000000_{+0} = 0.0000000_{+0} = 0.0000000_{+0} = 0.0000000_{+0} = 0.0000000_{+0} = 0.00000000_{+0} = 0.00000000_{+0} = 0.00000000_{+0} = 0.00000000_{+0} = 0.00000000_{+0} = 0.000000000_{+0} = 0.0000000000_{+0} = 0.000000000000_{+0} = 0.000000000000000000000000000000000$
(0) -0.0994
ζ_3
H110533055_+1122.1640414_+1_179.9944757_+1322
(1) 1514
$(2, 2, \dots, -0.1114)$
$(5_{}-0.0387)$
oldgeo_AM1_precise_external=@_force_geo-ok_nosym
AM1, precise, ts, external=@, geo-ok, nosym
$_C___0.000000_0____0.000000_0___0.0000000_0____0___0__0$
$[C_{____}1.310566]1_{____}0.000000]0_{____}0.0000000]0_{______}1_{____}0_{____}0$
$[C_{____}2.179061_1_{__}104.132782_1_{____}0.000000_0_{______2}_{_____1}_{_____0}]$
$[N_{____} 1.160916_1_{__} 160.493759_1_{____} 0.000000_1_{_____} 3_{_____} 2_{____} 1$
$ \underbrace{H_{}}_{1.076805} \underbrace{1_{}}_{126.972862} \underbrace{1_{}}_{0.000000} \underbrace{0.000000}_{1} \underbrace{1_{}}_{23} \underbrace{1_{}}_{23} \underbrace{1_{}}_{23} \underbrace{1_{}}_{2} \underbrace{1_{}}_{2$
$[H_{____} 1.084538_1_114.088127_1_180.000000_1____1_1_2_2\3]$
$[H_{____} 1.208813_1___35.831474_1__180.000000_1____2__2__2_2_2_2_2_2_2_2_2_2_2_$

MOPAC_MOP is created clonning **MOPAC_TEMPLATE** and replacing the symbol @ with the files obtained changing parametres in the **COE FS_TEMPLATE** file, one per each different coefficient vector. Therefore, if the *external bulk* option is used, and there are 100 coefficients per generation, one **MOPAC_MOP** file is generated referencing 100 different files, each one being a **COEFS_TEMPLATE** clone with the parameters obtained from **GAFit external input** changed.

21.5 extractor

extractor is a perl script which analyses the **MOPAC** 2009 output file, the **MOPAC_MOP** file replacing the *.mop* extension by *.out*. I.e. if **MOPAC_ MOP** is the default *mopac_input.mop* then the **MOPAC** 2009 output is *m opac_input.out*.

Syntax:

extractor number-of-vectors

File 21.7: Extractor first lines

```
1 #!/usr/bin/perl
2
3 use strict;
4
5 use constant {
                    => 0,
6
      HEATFCAL
       HEATFJUL
7
                    => 1,
                    => 2,
      NUMATOMS
8
       CARTESIAN
9
                    => 3.
10
      NUMFREQ
                    =>
                       4,
      FREQUENCIES => 5,
11
12
       CALCPERIND
                   => 6,
       GRADIENTS
13
                    => 7,
      NUMCONF
                    => 8,
14
15
       DIPXYZ
                    => 9,
       EEL
                    => 10,
16
17 };
18
19 my($CALS_TO_JOULES) = 4.1868;
20
21 \text{ my} (\% \text{ defaults}) = (
       'COEFS_TEMPLATE' => "template.coefs",
22
       'MOPAC_TEMPLATE' => "template.mop",
23
       'MOPAC_MOP'
                         => "mopac_input.mop",
24
       'EXTERNAL_INPUT' => "mopac.input",
25
       'EXTERNAL_FIT'
                              mopac.fit
26
                         =>
       'EXTRACTED DATA' => "extracted.data"
27
       'CONDITIONS_FIT' => "conditions.txt",
28
       'TOOLS_OUTPUT'
                         => "no",
29
30);
31
32 my (
       $CoefsTemplate, $MopacTemplate, $MopacMop,
33
                                          $ToolsOutput
       $ExternalInput, $ExternalFit,
34
       $MopacOut,
                         $Extracted,
                                          $ConditionsFit,
35
36);
37
38 \text{ my} (@mopErrors) = (
       "TOO_MANY_ITERATIONS_IN_LAMDA_BISECT"
39
       "CALCULATION IS TERMINATED TO AVOID ZERO DIVIDE"
40
       "GRADIENT_IS_TOO_LARGE_TO_ALLOW_FORCE_MATRIX_TO_BE_CALCULATED
41
```

42	"THIS_IS	_A_FATAL	_ERROR,	_RUN_STOPPED	_IN_GMETRY"	,
----	----------	----------	---------	--------------	-------------	---

- "TS_FAILED_TO_LOCATE_TRANSITION_STATE" 43 44
- "A_FAILURE_HAS_OCCURRED, TREAT_RESULTS_WITH_CAUTION !! ", 45
 - "EXCESS NUMBER OF OPTIMIZATION CYCLES",
- "SHEPHERD_NON_RECOVERABLE_ERROR" 46
- 47);

The gathered information is saved in an intermediate file -EXTRACT ED_DATA- with a suitable format to be processed later.

extractor accepts one command line parameter: the number of individual coefficients vectors used. The rest of the configuration data must be passed through environmental variables or use the defaults. See Table **21.1** and File **21.7**, line 15.

extractor also checks for MOPAC 2009 failure, i.e., when MOPAC 2009 is not able to achieve a result with the given parameters. Special care must be taken to test this and, if needed, change the @mopErrors array in the line 36 of the script -File 21.7-, adding the new error texts not listed before in the array found in the MOPAC 2009 output.

Also, change the @mopSTOPErrors array in line 40 of the script adding the fatal error texts² found in the MOPAC 2009 output which must stop the entire job.

0, 0, 6
3
13_0_0
$-\bar{879.04453}$
$13_{}0_{}1$
-3677.92230
13_0_2
7
13_0_3
$1_H_0.0000_0.0000_0.0000$
13_0_3
$2_C_50.4746_0.0000_0.0000$
13_0_3
$3_C_{84.8574_{36.9379_{0.0000}}$
13_0_3
4 _H_ 54.3105 _ -50.2347 _ -0.8804
13_0_3
$5_H_{122.4161}78.0661_{-}0.2120$
13_0_3
$6_C_{52.1018}_{1.8440}_{0.2744}$
13_0_3
$7_N_51.2886_0.9219_0.1372$
13_0_4
0
13_1_2
7
13_1_4
15
13_1_5
$1_{-}7.23$
13_15
$2_{-}7.20$

File 21.8: extracted.data

²They could be a *REGEX* expression as in this case. Note the '.*' in the middle of the string.

13_1_5			
3 _ -6.01			
13_1_5			
4 _ -5.91			
13_1_5			
$5_{-4.20}$			
13_1_5			
[]			

The **EXTRACTED_DATA** file format takes two lines per each kind of data. The first line indicates:

- the coefficient vector used from EXTERNAL_INPUT,
- the number of calculations from MOPAC_TEMPLATE, and
- the code type.

The second line has the data itself.

mnemonic	code	data fields	data
HEATFCAL	0	1	Heat of formation in kcal/mol
HEATFJUL	1	1	Heat of formation in kJ/mol
NUMATOMS	2	1	Number of atoms
CARTESIAN	3	5	Sequence number in structure, atom
NUMFREQ	4	1	symbol and x, y, z coordinates Number of total frequencies
FREQUENCIES	5	2	Sequence number and value in cm^{-1}
CALCPERIND	6	1	Total number of different calculations per coefficient vector
GRADIENTS	7	1	Gradients, x,y,z components per atom
NUMCONF	8	1	Number of states considered in one- electron excitations
DIPXYZ	9	4	Components x, y, z of the effect of dipole operator on states
EEL	10	3	Energies on states

Table 21.2: Extracted data

The different types of extracted data are shown in table 21.2 and in the line 5 of the File 21.7. An example is given in File 21.8. Failed calculations are not written to the file.

The tool **lsexdata** can be used to show the contents of the **EXTRACTED_DATA** file.

21.6 fitter

fitter reads the **EXTRACTED_DATA** file to calculate a fit for each coefficient vector using the conditions in the *conditions.txt* file. The variables that can be used to calculate the fit are shown in table 21.3. It is written in fortran and the syntax:

```
fitter number-of-vectors [extracted-data-file [ external-fit-file]]
```

The optional parameters -extracted-data-file and external-fit-file- defaults to the ones shown in the table 21.1 -EXTRACTED_DATA and EX TERNAL_FIT, respectively.

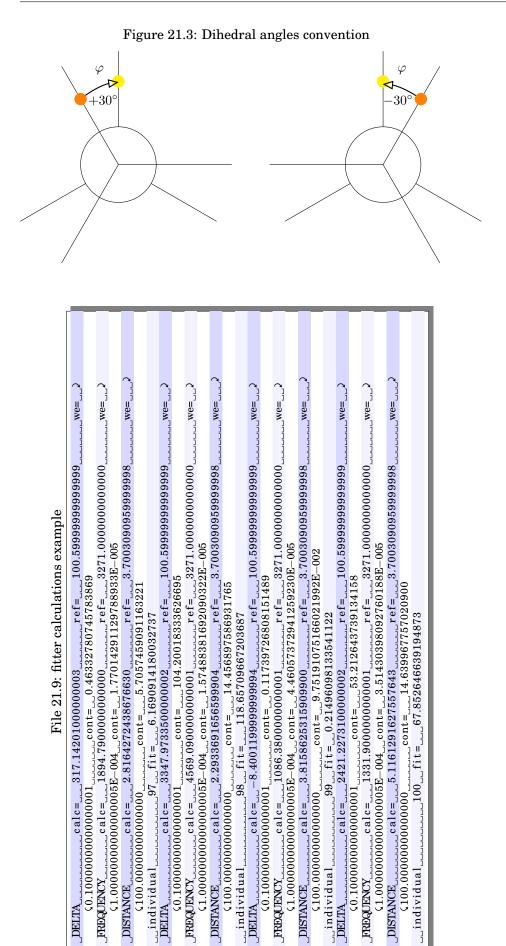
Condition	data fields	data	comment
heat delta	$\begin{vmatrix} 3\\4 \end{vmatrix}$	calcA value weight	Heat of formation of calculus <i>calcA</i> Difference between heat of formation of cal-
delta	4	calcA calcB value weight	culation calcA and calcB. $\Delta = (calcA - calcB)$ in kcal/mol
frequency	4	calcA N value weight	Frequency number N of the calculation calcA
gradient	4	calcA N value weight	Gradient number N of the calculation <i>calcA</i> . N varies from 1 to 3*NUMATOMS.
distance	5	calcA atom1 atom2 value weight	Distance between <i>atom1</i> and <i>atom2</i> into calculation <i>calcA</i>
angle	6	calcA atom1 atom2 atom3 value weight	Angle between <i>atom1</i> , <i>atom2</i> and <i>atom3</i> into calculation <i>calcA</i>
dihedral	7	calcA atom1 atom2 atom3 atom4 value weight	Dihedral angle between <i>atom1</i> , <i>atom2</i> , <i>atom3</i> , and <i>atom4</i> into calculation <i>calcA</i>
dipx	4	calcA state value weight	Component x of the effect of dipole operator on state into calculation calcA
dipy	4	calcA state value weight	Component y of the effect of dipole operator on state into calculation calcA
dipz	4	calcA state value weight	Component <i>z</i> of the effect of dipole operator on <i>state</i> into calculation <i>calcA</i>
eel	5	calcA state order value weight	State energy into calculation <i>calcA</i> . <i>State</i> : 1 for singlet, 2 for doublet and 3 for triplet. <i>Order</i> is the order in the listing (eg. 1 for first singlet, 2 for second singlet and so on). If there are no data for this state, a penalty is applied.
pena lty	1	penalty	Fit if any of the MOPAC calculations failed for a given coefficient vector. If not set, default value is 1.0e10.

Table 21.3: Fitter conditions

Each line references the calculation index into the MOPAC TEMPLA **TE** file, atom indexes, frequency numbers, etc, a reference value to check against the calculated one, and a weight.

An example of the *conditions.txt* file is shown in the File 21.10. The overall fit per coefficient vector is the sum of relative differences in each line calculation multiplied by its weight.

$\mathbf{fit} = \begin{cases} \sum [\mathbf{Reference}_i - \mathbf{Calculated}_i]^2 \, \mathbf{Weight}_i \, if \, calculation \, is \, done. \end{cases}$


penalty if calculation fails.

Due to the fact that distances, angles and dihedral angles are calculated from the Cartesian coordinates, the intervening atoms may not be connected in any other way.

The dihedral angles follow the usual convention, shown in the figure 21.3.

To express a condition, only the four first characters are needed, as shown in bold in table 21.3.

An example of fitter calculations using the file *conditions.txt* shown in File 21.10 is presented in File 21.9, where the type of condition, the calculated value, the reference value, the weight used, and the individual contributions to the final fit were printed. Default output is none but to activate it you must set the TOOLS_OUTPUT environmental variable to yes as shown in File 21.11.

DELTA

DELTA

DELTA

File 21.10: conditions.txt

$delt_{___}1_{__}2_{__}100.6_{____}0.1$
frequency2_5_3271.0_1e-4
distance $3_{1}, 3_{2}, 3_{2}, 3_{2}, 3_{2}, 3_{2}, 3_{2}, 100.0$
penalty_1e10

File 21.11: Minimal external-mopac2009.sh with the tools output active

```
1 #!/bin/sh
2 export MOPAC_LICENSE=$HOME/mopac2009
3 export MOPAC_MOP="mopac_input.mop"
4 export TOOLS_OUTPUT="yes"
5
6 injector $1
7 if [ "$1" -ne "0" ]
8 then
9 $MOPAC_LICENSE/MOPAC2009.exe $MOPAC_MOP
10 extractor $1
11 fitter $1
12 fi
```

21.7 Caveats

Some problems may arise when using a long **MOPAC** input file if the initial parameters are far from the optimized ones:

- If MOPAC crashes, it can freeze the entire job and you have to kill the MOPAC process manually. Alternatively, you may use **shepherd** to control this. See 22.
- It can be worse: a failed MOPAC calculation can spoil all the previous calculations in the input file. These failed calculations are the ones which the **fitter** assigns a *penalty*. See 21.6. You must use the **injector** default option to calculate one vector at once, or use **shepherd** to deal with it.

21.8 MOPAC 2012

MOPAC 2012 output differs a little from that of **MOPAC** 2009. From our point of view, the most important change is that some cartesian coordinates printout are missing, so internal coordinates must be used and converted to Cartesian. This job must be done by **extractor** using *quaternion maths* to calculate 3D rotations. The Karney [11] article is a good reference about this subject.

21.9 MOPAC 2016

There are no significant difference with this interface, but there are some output to *stderr* which make the *enhanced interface* –see Section 22– think that something is going wrong and kill the process. These are now filtered by **shepherd**.

Shepherd

Computers are good at following instructions, but not at reading your mind.

Donald Knuth

shepherd launches and controls the running MOPAC processes. It is written in C. Also, it can deal with the problems shown in section 21.7. It can:

- Detect and kill a MOPAC frozen/crashed process.
- Split the job sent by **GAFit** from one individual once at a time to a bunch of them.

The default behavior is to send a sole calculation – a **MOPAC_T EMPLATE** clone– per **MOPAC** process. You can change defaults modifying the source code and compiling it again: Details in section 22.2.

• Run, control and maintain a suitable number –equal or near to the number of resources available: CPUs, cores or hyperthreads, etc– of parallel MOPAC processes.

shepherd calculates a good value to this number. It dynamically changes depending on the node load.

Syntax:

shepherd

The *external command* to be used is slightly different with **shepherd** as shown in File 22.1:

- To use the special characteristics of **shepherd** the line 12 is changed to pass an entire parameters vector (*bulk*).
- Also line 15 is changed, where shepherd replaces the entire "\$MOPAC_LICENSE/ MOPAC2009.exe \$MOPAC_MOP" line. shepherd calls itself the MOPAC executable as needed.

```
File 22.1: external-mopac2009.sh with shepherd
```

1	#!/bin/sh
2	export MOPAC_LICENSE=\$HOME/mopac2009
3	
4	<pre>export COEFS_TEMPLATE="template.coefs"</pre>
5	<pre>export MOPAC_TEMPLATE="template.mop"</pre>
6	<pre>export MOPAC_MOP="mopac_input.mop"</pre>
7	<pre>export EXTERNAL_INPUT="mopac.input"</pre>
8	<pre>export EXTERNAL_FIT="mopac.fit"</pre>
9	<pre>export EXTRACTED_DATA="extracted.data"</pre>
10	<pre>export BOUNDS_FILE="bounds.txt"</pre>
11	
12	injector \$1 bulk
13	if ["\$1" -ne "0"]
14	then
15	shepherd
16	extractor \$1
17	fitter \$1 \$EXTRACTED_DATA \$EXTERNAL_FIT
18	fi

A shorter version of File 22.1 is 22.2 using the default values. **shepherd** is totally configured by the environmental variables.

File 22.2: Shorter external-mopac2009.sh with shepherd

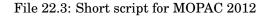
```
1 #!/bin/sh

2 export MOPAC_LICENSE=$HOME/mopac2009

3

4 injector $1 bulk

5 if [ "$1" -ne "0" ]


6 then

7 shepherd

8 extractor $1

9 fitter $1

10 fi
```



```
1 #!/bin/bash
2 export MOPAC_LICENSE=$HOME/mopac2012
3 export MOPAC_EXECUTABLE=MOPAC2012.exe
4 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/lib/saa/:$MOPAC_LICENSE
5
6 injector $1 bulk
7
8 if [ "$1" -ne "0" ]
9 then
10 shepherd
11 extractor $1
12 fitter $1
13 fi
```

22.1 Controling freezes

If a MOPAC 2009 process crashes, it freezes and blocks all the entire job (see 21.7).

In these cases, *glibc* will produce output on the process controlling terminal, so the environment variable LIBC_FATAL_STDERR_=1 must be set to send fatal errors to *stderr* in order to check it.

shepherd forks itself and execs the MOPAC process in an environment with the LIBC_FATAL_STDERR_ variable set, and establishing a *pipe* with the child process to read MOPAC's *stderr*.

If a fatal error is noticed, **shepherd** kills the child process avoiding the freeze and creates a fake **MOPAC** output file suitable for the **extractor**.

```
[...]
shepherd #flocks:4
shepherd errno 2 forrtl: severe (174): SIGSEGV, segmentation fault occurred
Image
                               Routine
                                                   Line
                                                                Source
                    PC
                    B760BEEA
                                                      Unknown
libc.so.6
                               Unknown
                                                                Unknown
libc.so.6
MOPAC2009.exe
                    B7610050
                               Unknown
                                                       Unknown
                                                                Unknown
                    08267594
                               Unknown
                                                       Unknown
                                                                Unknown
MOPAC2009.exe
                    08089053
                               Unknown
                                                       Unknown
                                                                Unknown
MOPAC2009.exe
                    0822AA58
                               Unknown
                                                       Unknown
                                                                Unknown
MOPAC2009.exe
                    081E835E
                               Unknown
                                                       Unknown
                                                                Unknown
MOPAC2009.exe
                    0818392E
                               Unknown
                                                       Unknown
                                                                Unknown
MOPAC2009.exe
                    0804A141
                               Unknown
                                                       Unknown
                                                                Unknown
                    B75B1DB6
libc.so.0
                               Unknown
                                                       Unknown
                                                                Unknown
MOPAC2009.exe
                    0804A051
                               Unknown
                                                       Unknown
                                                                Unknown
in file BE-BE.out lost sheep:56
shepherd elapsed time:17.611128
```

In the above example, **shepherd** notices a runtime error, so it kills the MOPAC 2009 process, creates the fake *BE-BE.out* file and continues processing. In the case of MOPAC 2012, the output is the same but with less detail.

22.2 Operating modes

shepherd takes the file MOPAC_MOP as input to build a MOPAC_MOP.out file, suitable for the extractor.

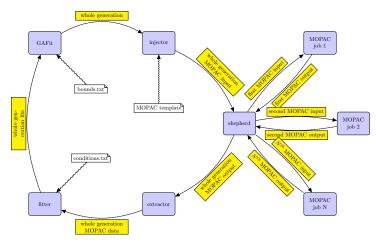
It calculates the number of individuals –how many MOPAC_TEMPLATEs are in the file–, and it can split the input in slices¹ from one individual² to many, running a MOPAC 2009 process on each slice.

The temporary files for the slices are in the form *FIRST-LAST.ext*, where *FIRST* and *LAST* are the first and last individuals in the file using the same naming convention as the *coefficient names* default option –see 15.4–, and *ext* is the extension corresponding to the type of file.

For example:

- *BE-BE.mop* is the MOPAC 2009 input file corresponding from 56th to 56th individuals.
- *A-E.out* is the MOPAC 2009 output file corresponding from 1st to 5th individuals as a result of calculations on *A-E.mop* input file.

¹Flocks in shepherd parlance ²Sheep


The default is to launch a MOPAC 2009 process with an individual –i.e.: A-A.mop–, an individual per slice³.

The other mode **-burst**- is disabled but it can be enabled recompiling the source code changing the line 640 in the *main* function setting **burst** to a value different from zero, File 22.4. **burst** mode is discouraged. See 21.7.

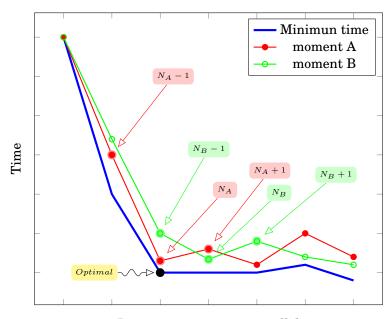
File 22.4: Shepherd, main function.

637	int
638	main (int argc, char **argv)
639	{
640	int burst = $0;$

In this mode, the slice can contain more than one individual and it will be calculated by one MOPAC 2009 process.

Figure 22.1: Data flow between GAFit and shepherd.

22.3 Parallel processes


Tracking the minimum time elapsed, processing an entire population and running a fixed number of concurrent MOPAC 2009 processes, yields the blue line shown in figure 22.2.

There is an optimum number from which a further increase in the number of parallel processes provides little gain in performance, or no gain at all. **shepherd** maintains the number of parallel processes around this number.

Using the *taskset* utility, some experiments were performed. Figure 22.3 shows the results in a real four core CPU running repeatedly the same **GAFit** task –same seed– selecting from one to four cores.

The same experiment was performed in an eight virtual cpu system. The host really had only a four core CPU. The results are shown in figure 22.4. Notice that the algorithm behaves as if there were only four core CPU.

³A sheep per flock

Running processes in parallel

Figure 22.2: Shepherd algorithm: minimum time

In figure 22.2, the red and green lines represent two different moments in the calculations. In both cases, **shepherd** steps down to find the first minimum. The minimum found is considered the optimum for this run –noted as N_A and N_B –.

shepherd processes entire populations cycling between N, N + 1 and N - 1 as the number of concurrent processes and it counts the real time spent. The time recorded changes dynamically, changing N in turn.

The number of times a number of parallel processes are chosen by **shepherd** are shown in figures 22.5 and 22.6.

This information can be summarized taking into account the average N in both cases, as shown in figure 22.7.

The algorithm presents a weakness: if **shepherd** writes to a local storage, the algorithm works well. However, if it writes to a share, it fails.

Figure 22.8 compares the same job –using the same seed, executed in a one CPU node– writing to a local storage and to a Network File System (NFS) share⁴.

As shown, writing to a local storage stabilizes the minimum time from one running process –it is a one core CPU–. But writing to a NFS share, minimum times stabilize over 12 running processes, as if there were 12 core CPUs.

There are a utility, **lstimes**, to show the current number of parallel processes, the time spend, the number of times the algorithm choose a particular number of processes and the maximum and minimun time.

⁴A typical configuration where the user's HOME is shared with all cluster nodes.

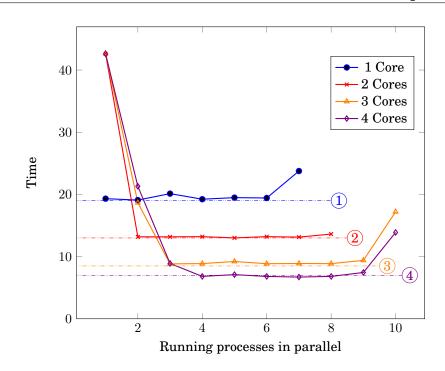


Figure 22.3: Real four core CPU: minimun time vs maximum concurrent parallel processes per run

Some interesting utilities, like **lstimes**, created to help with the **MOPAC** interface are commented in the Section 23.

You can fix the number of concurrent **MOPAC** processes setting the environmental variable SHEPHERD_CORES . Also, if *using the simple configuration*, you can use "**ncores: number**" into *job.txt* configuration file.

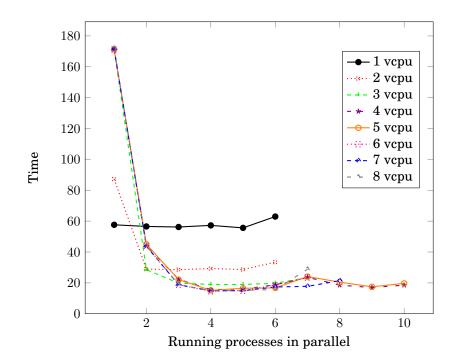


Figure 22.4: Virtual eight core CPU: minimum time vs maximum concurrent parallel processes per run

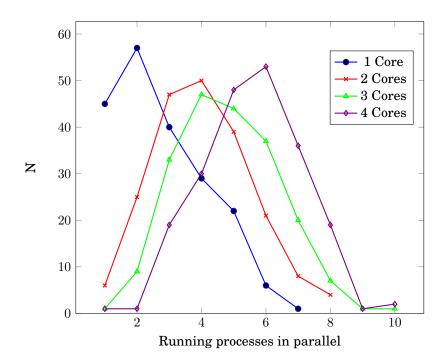


Figure 22.5: Real four core CPU: number of times (N) vs parallel processes per run

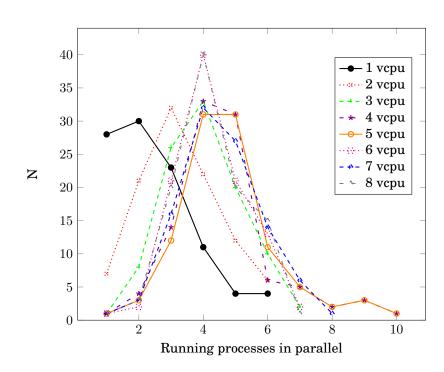


Figure 22.6: Virtual eight core CPU: number of times (N) vs parallel processes per run

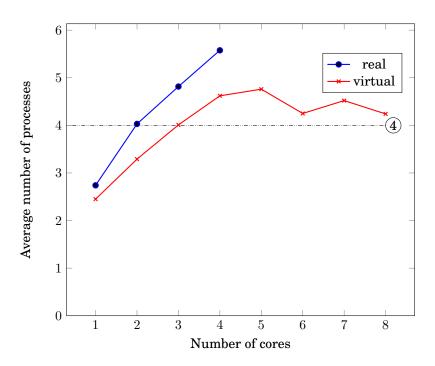


Figure 22.7: Average parallel processes per run. 4 core real CPU vs 8 core virtual CPU (4 real)

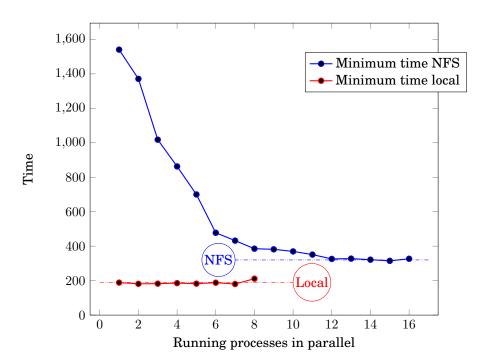


Figure 22.8: Behavior in the same one core CPU writing output to a NFS share vs local storage.

Mopac module tools

Give a man a fish, and you feed him for a day. Teach a man to fish, and he'll invite himself over for dinner.

Calvin Keegan

23.1 lsexdata

Utility to view the data extracted and saved by **extractor** in an intermediate file.

```
$ lsexdata
lsexdata v0.1(c)GAFit toolkit - 2014
Usage: lsexdata #individuals [file-data]
```

lstimes

Used to list statistical information about the processes managed by **shepherd** while running. The asterisk show the optimal point, the arrow the current number of concurrent processes.

	stime:	s toolkit 2014			
(0)	GAFIC				
PR	slot	current t	n	min	max
	1	103.296173	5	32.095946	177.990252
	2	66.666929	19	10.797143	177.528340
	3	57.509871	33	14.297250	169.456044
*-	4	56.051490	52	19.642072	164.538096
->	5	56.279652	51	23.727960	153.558413
	6	50.923629	42	25.808633	152.090570
	7	57.991970	44	20.538284	148.776540
	8	58.542538	26	22.370231	146.897739
	9	24.146727	29	20.527292	145.649365
	10	56.634926	23	17.946090	145.636910
	11	25.284372	34	19.549988	145.340982
	12	27.906675	27	18.232288	146.541943
	13	20.938043	12	20.345970	146.325395

```
-- 14 21.070755 9 21.070755 141.851327

-- 15 137.002666 1 137.002666 137.002666

-- 16 0.000000 0 0.000000 0.000000

last:5 total:407 average: 7.02
```

23.2 mkbounds

Useful to create the *bounds* file from the *coefficients template* varying the values a %percent up and down before run **shepherd**.

```
$ mkbounds
mkbounds v0.1 (c)GAFit toolkit - 2014
Create bounds file from coefs.template
Usage: mkbounds %percent
```

Using the default values, to create a *bounds.txt* file from *template.coefs* with the upper bounds increased 10% and the lower bounds decreased 10% from the *template.coefs* values:

\$mkbounds 10

File 23.1 is an example using **mkbounds** taken from the gradientexample included with the code.

```
File 23.1: External command with mkbounds
```

1	#!/bin/sh
2	export MOPAC_LICENSE=\$HOME/MOPAC
3	export MOPAC_EXECUTABLE=MOPAC2012.exe
4	export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH: \$MOPAC_LICENSE
5	export COEFS_TEMPLATE="template.coefs"
6	<pre>export MOPAC_TEMPLATE="template.mop"</pre>
7	<pre>export MOPAC_MOP="mopac_input.mop"</pre>
8	<pre>export EXTERNAL_INPUT="mopac.input"</pre>
9	export EXTERNAL_FIT="mopac.fit"
10	export EXTRACTED_DATA="extracted.data"
11	export BOUNDS_FILE="bounds.txt"
12	
13	injector \$1 bulk
14	
15	if ["\$1" -ne "0"]
16	then
17	shepherd
18	extractor \$1
19	
20	else
21	
22	fi

24

AT expressions

One thing that you can't fake is chemistry.

Blake Shelton

You can build a *input file* from a *template* using **@expressions**. These are places where the symbol **@** and the following characters are replaced with the coefficient values obtained by **GAFit**. The convention is as shown in Table 24.1.

Table 24.1: @expressions convention

@expression	example	description
<pre>@name(float valueA , float valueB)</pre>	@bondlenght(1.0,2.1)	replace with float values be- tween valueA and valueB.
<pre>@name(float valueC , float valueD/dp)</pre>	@energy(1.0,2.1/3)	replace with float values be- tween valueC and valueD us-
		ing dp decimal places.
@name(integer valueA, integer valueB)	@option1(1,5)	replace with integer values be- tween valueA and valueB.
<pre>@name(float valueA; float valueB;)</pre>	@angle(0.0;90.0;180.0;270.0)	pick one value from the list: valueA, valueB,

There are three types of @expressions:

- **d** float, like @distance(1.0, 2.3) to be replaced by a float from the interval: [1.0, 2.3]. Note the decimal point and the comma –and the optional slash for the decimal places–.
- i integer, like @*index*(1, 4) to be replaced by a integer value from the interval: [1, 4]. Note that there is not decimal point but there is a comma.
- **c** choice, like @choosefrom(0; 90; 180.0; 270) to be replaced by one float value picked up from the set $\{0, 90, 180, 270\}$. Note the semi colons.

An optional *format* completes the @**expressions** to resolve the problem to output fortran-like files with fixed formats:

- @distance(##.###, 1.0, 2.3) to use a format like *F6.3*.
- @index(#####, 1, 4) to use a format like *I5*.
- @choosefrom(###.#, 0; 90; 180.0; 270) to use a format like *F5.1*.

CHARMM module

Research is what I'm doing when I don't know what I'm doing.

Wernher Von Braun

Another feature of **GAFit** is the possibility to parametrize CHARMM –at least tested with version *c37b1*– as the external program.

The details of how **GAFit** works with an external interface –or external potential– are the same as explained in Section 21.1 with a final alternative approach. For clarity, details are printed again with specific modifications for this case.

25.1 External Interface

The *external interface* works as follows:

- **GAFit** generates a whole generation, where each individual is a coefficient vector.
- the coefficients are written in the file named in the **external input** option of the **[job]** section.
- the external program specified in the option **command** is run.
 - The external program must read the external input file, and
 - for each individual,
 - * doing its calculations,
 - * and writing the file named in the **external fit** option of the **[job]**.
- GAFit reads the external fit file.

• **GAFit** using the *fit*, given by the external program, applies the genetic operators to create a new generation.

This implementation uses the *bulk* option. So, an entire generation is written to the **external input** file, and the external **command** must write into the **external fit** file all the individuals fitting values. See Section 25.2.

In all cases, the **command** is executed passing one argument in the command line: the number of the individuals that were written to the **external input** file.

For example, if the **command** is *chmm.sh*, and the job is passing an entire generation of 100 coefficient vectors, the command line executed by the shell is:

\$ chmm.sh 100

external input examples are given in Files 15.8 and 15.9. **external fit** examples are the Files 15.10 and 15.11

Note, as stated before in previous sections that: **GAFit** only evaluates if there is a command processor available –i.e. sh– and the **coefficients** value. No other checks are performed.

Autoconfigure

Using the option *external auto*, the external command must configure **GAFit**. At the beginning, **GAFit** executes the external command passing an argument of "0". If the external command is *chmm.sh*, the command line executed by the shell is:

\$ chmm.sh 0

With a "0" parameter, the external command must answer with a file named "*response*" with the options requested. This file follows the *job.txt* format. An example from the CHARMM interface is shown below, File 25.1.

File 25.1: response generated by chmconfigurator	
--	--

[job]
type:_external_bulk
coefficients:_3
external_input:_charmm.input
external_fit:_charmm.fit
bounds: _bounds.txt
[coefficient_names]
tor1
mult1
phase1

Note that **GAFit** does not check if there is a *response* file before the call. All is ok if it finds one, independently of whether it has been created by the system call or not.

Stopping an external job

You can stop a running job writing a **stop file** in the folder where it is running. The **stop file**'s name is **__STOP__**, and the text it contains is whatever you want.

\$ echo ``stop job''> __STOP__

The launching of the external program follows the guidelines developed for the MOPAC case, sections 21 and 22. Only the final details and the tools developed are distinct.

25.2 Interfacing with CHARMM

Interfacing with CHARMM is achieved using three tools, all of them written in **C**: **chmconfigurator**, **chmreference** and **chmrunner**.

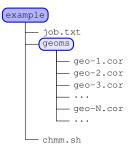
The first two are used to configure the system in the first stage, Figure 25.3. The last, **chmrunner**, create the files needed, runs **CHARMM** and calculate the fits, Figure 25.2.

The trick here, is to use the **CHARMM** capabilities to write a suitable output to be processed by only one simple binary, **chmrunner**. We don't need here to extract data from complicated output files and process it to calculate the fit.

chmconfigurator is responsible for:

- answering the **GAFit** *external auto* configuration option as an *external bulk* type job.
- prepare the calculations analyzing the parameters template (C HARMM_TEMPLATE) and writing the results to the file *temp late-analysis*.
- create the *bounds.txt* file for **GAFit** use.
- create the *chmfinal-hint* file for **chmfinal** use.

chmreference is in charge of:


• extracting data from the CHARMM geometry files (CHARMM _GEOMETRIES) to a intermediate file, *reference-table*, with a format for easy retrieve by chmrunner.

CHARMM_GEOMETRIES is the folder name where **chmref**erence will search for geometry files, Figure 25.1.

This step could be omitted if the *reference-table* file exist either hand made or from previous runs for exactly the same problem to fit.

chmrunner must:

- create the CHARMM's input file from the template.
- launch the calculations.
- evaluate the fitting.

Figure 25.1: CHARMM GEOMETRIES folder.

• write the file with the fits to be read by **GAFit**.

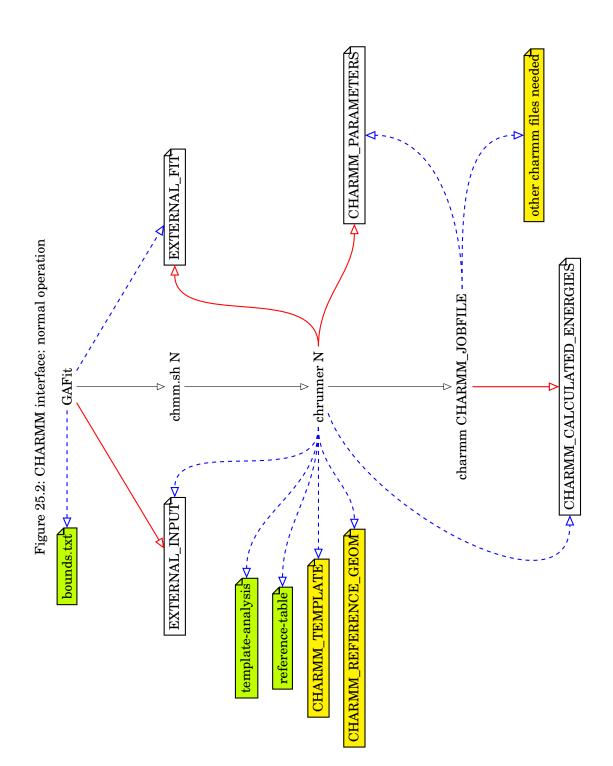
chmfinal is in charge of:

Only one template is used to generate the files needed by CHARMM.

parameters template (CHARMM_TEMPLATE) is used to extract the parameters values and replace them with the ones obtained by GAFit and to count and assign names to GAFit coefficients too.

There are places, marked with an @**expression**, where the symbol @ and the following characters are replaced with the values obtained by **GAFit**. The convention is as shown in Table 25.1.

	· ·	
Table 75 1.	@expressions	convention
1 abic 20.1.		CONVENDIN


@expression	example	description
@name(float valueA , float valueB)	@bondlenght(1.0,2.1)	replace with float values be- tween valueA and valueB.
<pre>@name(float valueC , float valueD/dp)</pre>	@energy(1.0,2.1/3)	replace with float values be- tween valueC and valueD us-
		ing dp decimal places.
@name(integer valueA, integer valueB)	@option1(1,5)	replace with integer values be-
		tween valueA and valueB.
@name(float valueA; float valueB;)	@angle(0.0;90.0;180.0;270.0)	pick one value from the list:
		valueA, valueB,

See AT expressions, Chapter 24.

The File **25.2** is an example.

File 25.2: CHARMM_TEMPLATE: template.prm with formats

[]
*typealpha-iN-iA-iG-i_DA_SymbOrigin
[]
*
د1@alp1(#.###,0.9,1.5)
$(@ai1(#.###, 3.6, 4.0) _ @gi1(#.###, 1.0, 1.5) _ CR _ E94$
21.3502.4903.8901.282C=CE94
31.1002.4903.8901.282C=OE94
[]

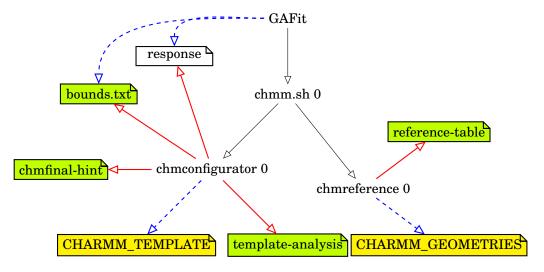
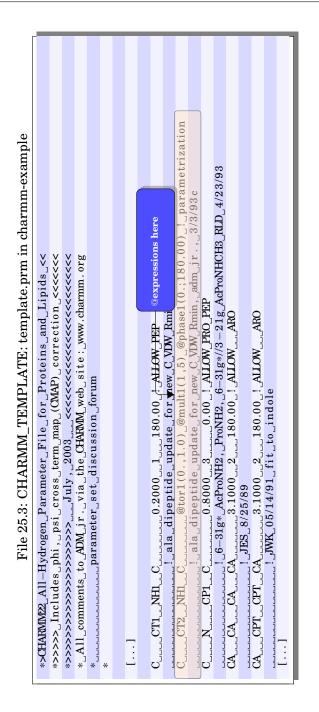



Figure 25.3: CHARMM: autoconfigure and job preparation

Here, is important to highlight the fact that the *bounds file* is generated from the template using the the values from the **@expression**'s. Also, the **@expression**'s names are used to create the **[coefficient names]** section in the *response* file –File 25.1–.

Figures 25.2 and 25.3 show the relations between programs and files:

- Dashed blue lines indicate that a tool uses the file as input.
- **red** lines indicates that a tool creates the file.
- **Black** lines indicate calls to execute a tool.
- Files filled in *yellow* indicate that they must be created or given by the user.
- Files filled in *lime* indicate that they are created in the first call to the **external program** *-chmm.sh* in this case- but used without modification along the rest of the calculations.

Variable	Default value	Tools
EXTERNAL_INPUT EXTERNAL_FIT BOUNDS_FILE	charmm.input charmm.fit bounds.txt	GAFit, chmrunner GAFit, chmrunner GAFit, chmconfigura- tor
CHARMM_TEMPLATE CHARMM_PARAMETERS CHARMM_JOBFILE [†] CHARMM_EXECUTABLE CHARMM_GEOMETRIES CHARMM_REFERENCE_GEOM	template.prm parameters.prm fitting charmm geometries none	chmconfigurator chmrunner chmrunner chmrunner chmreference chmreference, chmrun-
CHARMM_CALCULATED_ENERGIES	calculated.energies	ner chmrunner

Table 25.2: Environmental variables

[†]the CHARMM_JOBFILE variable is used to generate a CHARMM_JOBFILE.dat file as input for CHARMM and a CHARMM_JOBFILE.out file for output. The command executed is:

 $charmm < CHARMM_JOBFILE.dat > CHARMM_JOBFILE.out$

25.3 External command

· #1/him/ah

File 25.4: job.txt in charmm-example

[job]
runs:
evaluations:5000
type:external_auto
command:chmm.sh
[print]
print_runs:_yes

GAFit only calls an external shell script: the name given in *job.txt*. In this case: *chmm.sh*, File 25.4.

There is a complete example in the folder *charmm-example* which can be examined in the File 25.5.

File 25.5: External: chmm.sh

	1	#!/ D1n/ Sn
	2	
	3	export EXTERNAL_INPUT="charmm.input"
	4	export EXTERNAL_FIT="charmm.fit"
	5	export BOUNDS_FILE="bounds.txt"
	6	export CHARMM_TEMPLATE="template.prm"
	7	export CHARMM_PARAMETERS="parameters.prm"
	8	
	9	export CHARMM_GEOMETRIES="geoms"
		export CHARMM_REFERENCE_GEOM="GEO-9.COR"
1	ι1	export CHARMM_CALCULATED_ENERGIES="calculated.energies"
1	12	export CHARMM_JOBFILE="fitting"
1	L3	export CHARMM_EXECUTABLE="\$HOME/CHARMM/c37a1dev/exec/gnu/charmm"
1	L4	
1	15	
1	16	if ["\$1" -ne "0"]
1	L7	then
1	18	chmrunner \$1 1 4
-		

```
19else20chmconfigurator $121chmreference $122fi
```

A minimal implementation to *chmm.sh* due to the defaults, could be the File 25.6.

File 25.6: Minimal external chmm.sh

```
1 #!/bin/sh
2 export CHARMM_GEOMETRIES="geoms"
3 export CHARMM_EXECUTABLE="$HOME/CHARMM/c37a1dev/exec/gnu/charmm"
4
5 if [ "$1" -ne "0" ]
6 then
7 chmrunner $1 1 4
8 else
9 chmconfigurator $1
10 chmreference $1
11 fi
```

25.4 chmconfigurator

chmconfigurator is a program written in C. The syntax is

chmconfigurator number-of-vectors

When **GAFit** calls the *external command* passing a "0" as first parameter, the **chmconfigurator** creates the file *response* and **GAFit** uses this information to configure itself –File 25.1–. This file is deleted the first time **chmrunner** runs. Also **chmconfigurator** creates the *bounds.txt* and *template-analysis* files.

The *template-analysis* is a summary from the CHARMM_TEMPLATE file. An example is File 25.7 and the format is shown in Table 25.3.

name	@expression	format	type	limits string	lower limit	upper limit
tor1 mult1	@tor1 (0. ,1.0) @mult1(1 ,5)		d i	0., 1.0 1,5	0. 1	1.0 5
					GAFit integer	choice value

Table 25.3: template-analysis format

The **choice** type is handled by **GAFit** as integers. So, a set like 0;45;90;180 are translated to a **GAFit** integer coefficient with *bounds* between 1 and 4. There are a utility to do automatically the translation: **chmfinal**. See Section 25.7.

File 25.7: template-analysis file

I III III J
tor1 @tor1(0.,1.0) d 0.,1.0 0. 1.0
mult1 @mult1(1,5) i 1,5 1 5
phase1 @phase1(0.;180.00) c 0.;180.00 1 2 0180.00

The data needed to create the *response* file is obtained from environmental variables and from the **CHARMM_TEMPLATE** file¹.

chmconfigurator expects a "0" as argument, if not it refuses to work.

25.5 chmreference

chmreference is a program written in C. The syntax is

```
chmreference number-of-vectors
```

chmreference creates the file *table-reference*–File 25.8– extracting data from geometry files. There are three columns: the geometry file name, the reference energy and the weight of the energy. Table 25.4 shows the three first lines from File 25.8.

File 25.8:	table-reference	file
I IIC 20.0.		mu

$GEO-1.COR21.422200_1.000000$	
$GEO-10.COR30.643500_1.000000$	
$GEO-11.COR30.151300_1.000000$	
[]	
$GEO-48.COR34.625700_1.000000$	
$GEO-49.COR34.876600_1.000000$	
$GEO-5.COR28.488700_1.000000$	
$GEO-6.COR23.643300_1.000000$	
GEO-7.COR18.127800_1.000000	
$GEO-8.COR26.037500_1.000000$	
$GEO-9.COR28.996000_1.000000$	
	l

Table 25.4: table-reference format

geometries file	reference energy	weight
GEO-1.COR	-21.422200	1.000000
GEO-10.COR	-30.643500	1.000000
GEO-11.COR	-30.151300	1.000000

In order to **chmreference** works, its is necessary to modify the geometry files to include data for reference energy and weight in the first line after a colon, as shown in Files 25.9 and 25.10. The first number after the first colon is interpreted as the energy -21.4222, in the example shownand after the second colon as the weight. If there is no second colon and/or weight present, it is taken as 1.

```
File 25.9: geo-1.cor file
```

$*_1_:21.4222$
*DATE:2/_9/1517:33:51CREATED_BY_USER: _ user
*
29
CO.00000

¹Number and name of the coefficients.

```
    CONTRACT CONTRA
```

File 25.10: geo-1.cor file with weight set

$ 1_: 21.4222_: 1.2$
*DATE:2/_9/1517:33:51CREATED_BY_USER:_user
*
29
$____1_GLY_CAY_\2.20096_\0.38688__0.68947_GLY3_1____2$
ξ 0.00000
22221 GLY HY1 22222 -2.03907 -0.96864 -0.24205 GLY 122222
ξ 0.00000
$___3___1_GLY\HY2__\2.76856___0.53806___0.45524_GLY3_1____2$
ξ 0.00000

You can set a reference energy using the environment variable CHAR MM_REFERENCE_GEOM, so the energies are normalized as shown in File 25.11.

File 25.11: table-reference file normalized with geom-9.cor

	_
GEO-1.COR_7.573800_1.000000	
$GEO-10.COR1.647500_1.000000$	
GEO-11.COR1.155300_1.000000	
[]	
$GEO-48.COR5.629700_1.000000$	
$GEO-49.COR5.880600_1.000000$	
GEO-5.COR_0.507300_1.000000	
GEO-6.COR_5.352700_1.000000	
GEO-7.COR_10.868200_1.000000	
GEO-8.COR_2.958500_1.000000	
GEO-9.COR_0.000000_1.000000	

chmreference like **chmconfigurator** expects a "0" as argument, if not it refuses to work.

25.6 chmrunner

chmrunner is a program written in C. The syntax is

chmrunner number-of-vectors index-column energy-column

The parameters must be:

- **number-of-vectors** the number of coefficient vectors, which are written in the file EXTERNAL_INPUT.
- **index-column** the column in the file CHARMM_CALCULATED_ENER GIES which is the index: A string equal to the first column string in the file *reference-table*. We use here the geometry file names. Column 1 in File 25.12.

energy-column the column number in the file CHARMM_CALCULATE D_ENERGIES corresponding to the calculated energy. Column 4 in File 25.12.

When it is called, chmrunner:

- loads the EXTERNAL_INPUT file.
- for each vector, **chmrunner**:
 - creates a CHARMM_PARAMETERS file from CHARMM_TEM PLATE replacing the @**expressions** by the vector values
 - launches a CHARMM job using CHARMM_EXECUTABLE and CHARMM_JOBFILE as a parameter. Using the example configuration, the system call is like:

\$HOME/CHARMM/c37aldev/exec/gnu/charmm < fitting.dat > fitting.out

The extensions *.dat* and *.out* are added by **chmrunner**. An example is the File 25.13.

- examines the results loading the file CHARMM_CALCULATE D_ENERGIES created by the CHARMM job.
- finally, after processing all the coefficient vectors, writes the EXTER NAL_FIT file with all the fits.

File 25.12: calculated-energies file example

CEO 1 COD 0 725057E 02 2 021801E 04 09 001
$_GEO-1.COR\2.735957E-03\3.231801E-04\22.221$
$GEO-2.COR_0.426072_30.383824.2362$
$GEO-3.COR_0.36839_60.362227.9524$
$_GEO-4.COR_8.464627E-02_90.0958\30.0975$
$_GEO-5.COR\0.281997_119.692\29.2872$
$_GEO-6.COR\0.655632_149.257\24.4397$
$_GEO-7.COR\6.443053E-03_179.996\18.9246$
$_G\!E\!O\!-\!8.C\!O\!R_{_}30.7522_0.315584\26.8306$
$GEO-9.COR_{30.6181_{30.2866_{-29.788}}$
[]

The CHARMM_JOBFILE –File 25.13– must be coded to write the CH ARMM_CALCULATED_ENERGIES file in each run – File 25.12– with a column to use as index to check against the *table-reference* file and the energy. As shown, other data can be printed too in this file. In this example, **chmrunner** reads the first –geometry file name used as index– and the fourth column –energy value–.

If is set the *reference geometry* -CHARMM_REFERENCE_GEOM-, its calculated value is used to normalize the calculated values like as the reference geometry energy is used to normalize the *table-reference* file.

The fit is calculated as:

$$fit = \sum_{i} [NormalizedCalculatedE_{i} - NormalizedTableReferenceE_{i}]^{2.0} * weight_{i}$$

File 25.13: charmm job example:fitting.dat

<pre>*_gfy3_:fitting_torsional_terms_fir_phi_(C-N-CA-C)_and_psi_(N-CA-CO O)ihedrals_in_last_residue. *_C-N-CA-C *_N-CA-CO bomlev5 open_unit_1_card_read_name_top_all36_prot_lipid.rtf read_KFR_card_unit_1 open_unit_2_card_read_name_parameters.prm read_PARA_card_unit_2 !_read_the.psf_and_coordinate_file read_psf_card_name_gly3.psf !read_coor_card_name_gly3.psf !read_coor_generating_conformations_around_phi_and_psi set_CTR_1 set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_2.21 set_3_23 set_4_26 set_2.21 !loop_through_the_geometries !set_up_a_file_to_keep_track_of_energies IABEL_LOOP !_overwrite_the_coordinates_by_reading_a_new_setthis_requires_> Cbomlev_is_set_appropriately ! bomlev_0 open_unit_29_card_read_name_geoms/geo=CTR.cor read_coor_card_unit_29 elose_unit_29 :get_4</pre>	
<pre>*_N-CA-C=0 bomlev_=5 open_unit_1_card_read_name_top_all36_prot_lipid.rtf read_RTF_card_unit_1 open_unit_2_card_read_name_parameters.prm read_PARA_card_unit_2 !_read_the_psf_and_coordinate_file read_set_card_name_gly3.epf !read_coor_card_name_gly3.optc.crd set_CTR_1 set_loopsize_49 !_loop_for generating_conformations_around_phi_and_psi set_1_19 set_2_21 set_3_23 set_4_26 set_5_27 !loop_through_the_geometries</pre>	*_gly3_:_fitting_torsional_terms_fir_phi_(C-N-CA-C)_and_psi_(N-CA-C=O ζ)_dihedrals_in_last_residue.
<pre>bomlev5 open_unit_1_card_read_name_top_all36_prot_lipid.rtf read_RTF_eard_unit_1 open_unit_2_card_read_name_parameters.prm read_PARA_card_unit_2 !_read_the_psf_and_coordinate_file read_paf_eard_name_gly3.psf !read_coor_card_name_gly3.optc.rd set_CTR_1 set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_2.21 set_3.23 set_4.26 set_5_27 !loop_through_the_geometries OPEN_WRTE_CARD_UNIT_21_name_calculated .energies IABEL_IOOP !_overwrite_the_coordinates_by_reading_a_new_setthis_requires_> Chomlev_is_set_appropriately! bomlev_0 open_unit_29_card_read_name_geoms/geo-@CTR.cor read_coor_card_unit_29 close_unit_29 close_unit_29 cur_energyrecompute_the_energy_without_restraints cur_quick_@1,@2,@3,@4 cur_set_psiangle_?phi curunit_21</pre>	
<pre>open_unit_l_card_read_name_top_all36_prot_lipid.rtf read_RTF_card_unit_l open_unit_2_card_read_name_parameters.prm read_PARA_card_unit_2 '_read_the_psf_and_coordinate_file read_paf_card_name_gly3.psf 'read_coor_card_name_gly3.opt.crd set_CTR_1 set_loopsize_49 '_Loop_for_generating_conformations_around_phi_and_psi set_1_19 set_3_23 set_4_26 set_5_27 'loop_through_the_geometries '</pre>	*_N-CA-C=O
<pre>open_unit_l_card_read_name_top_all36_prot_lipid.rtf read_RTF_card_unit_l open_unit_2_card_read_name_parameters.prm read_PARA_card_unit_2 '_read_the_psf_and_coordinate_file read_paf_card_name_gly3.psf 'read_coor_card_name_gly3.opt.crd set_CTR_1 set_loopsize_49 '_Loop_for_generating_conformations_around_phi_and_psi set_1_19 set_3_23 set_4_26 set_5_27 'loop_through_the_geometries '</pre>	
<pre>read_RTF_card_unit_1 open_unit_2_card_read_name_parameters.prm read_PARA_card_unit_2 !_read_the_psf_and_coordinate_file read_psf_card_name_gly3.optc.crd set_CTR_1 set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_2.21 set_3.23 set_4.26 set_5.27 !loop_through_the_geometries</pre>	bomievb
<pre>read_RTF_card_unit_1 open_unit_2_card_read_name_parameters.prm read_PARA_card_unit_2 !_read_the_psf_and_coordinate_file read_psf_card_name_gly3.optc.crd set_CTR_1 set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_2.21 set_3.23 set_4.26 set_5.27 !loop_through_the_geometries</pre>	open unit 1 card read name ton all36 prot lipid rtf
<pre>open_unit_2_card_read_name_parameters.prm read_PARA_card_unit_2 !_read_the_psf_and_coordinate_file read_psf_card_name_gly3.psf !read_coor_card_name_gly3.optc.crd set_CTR_1 set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_2_1 set_3_23 set_4_26 set_5_27 !loop_through_the_geometries</pre>	
<pre>read_PARA_card_unit_2 !_read_the_psf_and_coordinate_file read_psf_card_name_gly3.psf !read_coor_card_name_gly3.optc.crd set_CTR_1 set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_1_19 set_2_21 set_3_23 set_4_26 set_5_27 !loop_through_the_geometries</pre>	
<pre>!_read_the_psf_and_coordinate_file read_psf_card_name_gly3.psf !read_coor_card_name_gly3.optc.crd set_CTR_1 set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_2.21 set_3_23 set_4_26 set_5_27 !loop_through_the_geometries</pre>	open_unit_2_card_read_name_parameters.prm
<pre>read_psf_card_name_gly3.psf !read_coor_card_name_gly3.optc.crd set_CTR_1 set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_1.19 set_3_21 set_3_23 set_4_26 set_5_27 !loop_through_the_geometries !set_up_a_file_to_keep_track_of_energies OPEN_WRITE_CARD_UNIT_21_name_calculated .energies LABEL_LOOP !_overwrite_the_coordinates_by_reading_a_new_setthis_requires_)</pre>	read_PARA_card_unit_2
<pre>read_psf_card_name_gly3.psf !read_coor_card_name_gly3.optc.crd set_CTR_1 set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_1.19 set_3_21 set_3_23 set_4_26 set_5_27 !loop_through_the_geometries !set_up_a_file_to_keep_track_of_energies OPEN_WRITE_CARD_UNIT_21_name_calculated .energies LABEL_LOOP !_overwrite_the_coordinates_by_reading_a_new_setthis_requires_)</pre>	
<pre>!read_coor_card_name_gly3.optc.crd set_CTR_1 set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_2_21 set_3_23 set_4_26 set_5_27 !loop_through_the_geometries</pre>	
<pre>set_CTR_1 set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_1.19 set_2.21 set_3.23 set_4.26 set_5_27 !loop_through_the_geometries</pre>	
<pre>set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_1_19 set_2_21 set_3_23 set_4_26 set_5_27 !loop_through_the_geometries</pre>	:reau_coor_caru_name_gry5.optc.cru
<pre>set_loopsize_49 !_Loop_for_generating_conformations_around_phi_and_psi set_1_19 set_2_21 set_3_23 set_4_26 set_5_27 !loop_through_the_geometries</pre>	set CTR 1
<pre>!_Loop_for_generating_conformations_around_phi_and_psi set_1_19 set_2_21 set_3_23 set_4_26 set_5_27 !loop_through_the_geometries</pre>	
<pre>set_1_19 set_2_21 set_2_21 set_2_23 set_4_26 set_5_27 !loop_through_the_geometries !set_up_a_file_to_keep_track_of_energies</pre>	!_Loop_for_generating_conformations_around_phi_and_psi
<pre>set_3_23 set_4_26 set_5_27 !loop_through_the_geometries</pre>	set_1_19
<pre>set_4_26 set_5_27 !loop_through_the_geometries</pre>	
<pre>set_5_27 !loop_through_the_geometries</pre>	
<pre>!loop_through_the_geometries</pre>	
<pre>!set_up_a_file_to_keep_track_of_energies OPEN_WRITE_CARD_UNIT_21_name_calculated .energies LABEL_LOOP !_overwrite_the_coordinates_by_reading_a_new_setthis_requires_> (bomlev_is_set_appropriately! bomlev_0 open_unit_29_card_read_name_geoms/geo-@CTR.cor read_coor_card_unit_29 close_unit_29 close_unit_29 energy!_recompute_the_energy_without_restraints quick_@1_@2_@3_@4 set_psiangle_?phi set_phiangle_?phi set_name_geo-@CTR.cor WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_> (and_energy *@name_@psiangle_@phiangle_?ENER * NCR_CTR IF_@CTR_LIT_@loopsize.5COTO_LOOP close_unit_21</pre>	set_b_27
<pre>!set_up_a_file_to_keep_track_of_energies OPEN_WRITE_CARD_UNIT_21_name_calculated .energies LABEL_LOOP !_overwrite_the_coordinates_by_reading_a_new_setthis_requires_> (bomlev_is_set_appropriately! bomlev_0 open_unit_29_card_read_name_geoms/geo-@CTR.cor read_coor_card_unit_29 close_unit_29 close_unit_29 energy!_recompute_the_energy_without_restraints quick_@1_@2_@3_@4 set_psiangle_?phi set_phiangle_?phi set_name_geo-@CTR.cor WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_> (and_energy *@name_@psiangle_@phiangle_?ENER * NCR_CTR IF_@CTR_LIT_@loopsize.5COTO_LOOP close_unit_21</pre>	loon through the geometries
OPEN_WRITE_CARD_UNIT_21_name_calculated . energies LABEL_LOOP !_overwrite_the_coordinates_by_reading_a_new_setthis_requires_) (bomlev_is_set_appropriately ! bomlev_0 open_unit_29_card_read_name_geoms/geo=@CTR.cor read_coor_card_unit_29 close_unit_29 energyeag_@4 energyeag_@4 guick_@1_@2_@3_@4 guick_@2_@3_@4_@5 set_phiangle_?phi set_name_geo=@CTR.cor WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_} (and_energy *@name_@psiangle_@phiangle_?ENER * NCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21	
OPEN_WRITE_CARD_UNIT_21_name_calculated . energies LABEL_LOOP !_overwrite_the_coordinates_by_reading_a_new_setthis_requires_) (bomlev_is_set_appropriately ! bomlev_0 open_unit_29_card_read_name_geoms/geo=@CTR.cor read_coor_card_unit_29 close_unit_29 energyeag_@4 energyeag_@4 guick_@1_@2_@3_@4 guick_@2_@3_@4_@5 set_phiangle_?phi set_name_geo=@CTR.cor WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_} (and_energy *@name_@psiangle_@phiangle_?ENER * NCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21	!set_up_a_file_to_keep_track_of_energies
<pre>'_' '_overwrite_the_coordinates_by_reading_a_new_setthis_requires_) (bomlev_is_set_appropriately! bomlev_0 open_unit_29_card_read_name_geoms/geo-@CTR.cor read_coor_card_unit_29 close_unit_29 'energy!_recompute_the_energy_without_restraints 'quick_@1_@2_@3_@4 'set_psiangle_?phi 'set_psiangle_?phi 'set_name_geo-@CTR.cor 'WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_? 'vand_energy '!_write_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!</pre>	
<pre>'_' '_overwrite_the_coordinates_by_reading_a_new_setthis_requires_) (bomlev_is_set_appropriately! bomlev_0 open_unit_29_card_read_name_geoms/geo-@CTR.cor read_coor_card_unit_29 close_unit_29 'energy!_recompute_the_energy_without_restraints 'quick_@1_@2_@3_@4 'set_psiangle_?phi 'set_psiangle_?phi 'set_name_geo-@CTR.cor 'WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_? 'vand_energy '!_write_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite_out_the_current_restraint_distance_?' ''Int!_mrite!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!</pre>	
Cbomlev_is_set_appropriately! bomlev_0 open_unit_29_card_read_name_geoms/geo-@CTR.cor read_coor_card_unit_29 close_unit_29 energyenergy_without_restraints quick_@1_@2_@3_@4 set_psiangle_?phi set_phiangle_?phi set_phiangle_?phi set_name_geo-@CTR.cor WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_? Cand_energy *@name_@psiangle_@phiangle_?ENER * INCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21	LABEL_LOOP
Cbomlev_is_set_appropriately! bomlev_0 open_unit_29_card_read_name_geoms/geo-@CTR.cor read_coor_card_unit_29 close_unit_29 energyenergy_without_restraints quick_@1_@2_@3_@4 set_psiangle_?phi set_phiangle_?phi set_phiangle_?phi set_name_geo-@CTR.cor WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_? Cand_energy *@name_@psiangle_@phiangle_?ENER * INCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21	I anomality the coordinates he median a new set this measures)
<pre>bomlev_0 open_unit_29_card_read_name_geoms/geo-@CTR.cor read_coor_card_unit_29 close_unit_29 energyenergyenergy_without_restraints quick_@1_@2_@3_@4set_psiangle_?phiset_phiangle_?phiset_name_geo-@CTR.cor WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_? Cand_energy*@name_@psiangle_@phiangle_?ENER* INCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21</pre>	(homley is set appropriately!
<pre>open_unit_29_card_read_name_geoms/geo_@CTR.cor read_coor_card_unit_29 close_unit_29 energyenergy_without_restraints quick_@1_@2_@3_@4 set_psiangle_?phi quick_@2_@3_@4_@5 set_phiangle_?phi set_name_geo_@CTR.cor WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_? (and_energy *@name_@psiangle_@phiangle_?ENER * INCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21</pre>	
<pre>read_coor_card_unit_29 close_unit_29 ucc_energy_constructed !_recompute_the_energy_without_restraints ucc_quick_@1_@2_@3_@4 ucc_set_psiangle_?phi ucc_quick_@2_@3_@4_@5 ucc_set_phiangle_?phi ucc_set_name_geo=@CTR.cor ucc_WRITE_TITLE_UNIT_21_ucl_write_out_the_current_restraint_distance_? (and_energy uccus* INCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21</pre>	
<pre>energy!_recompute_the_energy_without_restraints quick_@1_@2_@3_@4 set_psiangle_?phi set_phiangle_?phi set_name_geo=@CTR.cor WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_? (and_energy* @name_@psiangle_@phiangle_?ENER* INCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21</pre>	
<pre>uuusk_@1_@2_@3_@4 uuuuset_psiangle_?phi uuuuset_phiangle_?phi uuuuset_phiangle_?phi uuuuset_name_geo=@CTR.cor uuuuWRITE_TITLE_UNIT_21_uu!_write_out_the_current_restraint_distance_?</pre>	
<pre>uuusk_@1_@2_@3_@4 uuuuset_psiangle_?phi uuuuset_phiangle_?phi uuuuset_phiangle_?phi uuuuset_name_geo=@CTR.cor uuuuWRITE_TITLE_UNIT_21_uu!_write_out_the_current_restraint_distance_?</pre>	
<pre>set_psiangle_?phi u_uck_@2_@3_@4_@5 u_ucset_phiangle_?phi u_ucset_name_geo-@CTR.cor u_uWRITE_TITLE_UNIT_21_u.!_write_out_the_current_restraint_distance_?</pre>	energyenergy_without_restraints
<pre>set_psiangle_?phi u_uck_@2_@3_@4_@5 u_ucset_phiangle_?phi u_ucset_name_geo-@CTR.cor u_uWRITE_TITLE_UNIT_21_u.!_write_out_the_current_restraint_distance_?</pre>	
<pre>uuck_@2_@3_@4_@5 uuuuset_phiangle_?phi uuuuset_name_geo-@CTR.cor uuuuWRITE_TITLE_UNIT_21_uu!_write_out_the_current_restraint_distance_?</pre>	sot naionale 2nhi
<pre>set_phiangle_?phiset_name_geo-@CTR.corWRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_?</pre>	anick @2 @3 @4 @5
<pre>set_name_geo-@CTR.cor WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_</pre>	set phiangle ?phi
USUL WRITE_TITLE_UNIT_21_U write_out_the_current_restraint_distance_ Cand_energy CSUL * @name_@psiangle_@phiangle_?ENER CSUL * INCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21	
Cand_energy Canded and and and and and and and and and an	
LULL * _ @name_@psiangle_@phiangle_?ENER LULL * INCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21	WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_
LULL* INCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21	Cand_energy
INCR_CTR IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21	
IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21	
IF_@CTR_LT_@loopsize.5GOTO_LOOP close_unit_21	NICE OTTE
close_unit_21	
	น.ีลงนท์ในเวิดเกกโอเซะาวาีสุดเกโนด์หลา
	close unit 21
stop	
	stop

set_up_a_file_to_keep_track_of_energies_and_dihedral_angles_?
C OPEN_WRITE_CARD_UNIT_21_nameenergies.dat
!_Loop_for_generating_conformations_around_phi_and_psi
set_1_19
set_2_21
set_3_23
set_4_26
set_5_27 set_delta_60!_increment_for_rotational_angle
set_i_1
set_apsi_0.
label_looppsi
set_aphi_0.
label_loopphi
and dita house at an an an force 1000 min and rais 1
cons_dihe_bynum_@1_@2_@3_@4_force_1000min_@apsi_peri_1 cons_dihe_bynum_@2_@3_@4_@5_force_1000min_@aphi_peri_1
cons_unre_bynum_@2_@3_@4_@3_force_footmmi_@apmi_perf_f
!.Minimization
mini_sd_nstep_200
mini_abnr_nstep_1000_nprint_500_tolg_0.01
Lucons_cldh
energyenergy_without_restraints
anick @1 @2 @3 @4
quick_@1_@2_@3_@4 set_psiangle_?phi
quick_@2_@3_@4_@5
set_phiangle_?phi
WRITE_TITLE_UNIT_21!_write_out_the_current_restraint_distance_
Cand_energy
*_@psiangle_@phiangle_?ENER
!ioform_extended
!_Optimized_geometry
!open_write_unit_10_card_name_geo-@i.pdb
!write_coor_unit_10_pdb
open_unit_10_card_write_name_geo-@i.cor
write_unit_10_COOR_card
*_@i_:_?ener
close_unit_10
incr_i_by_1
incr_aphi_by_@delta
if_@aphile180then_goto_loopphi
incr_apsi_by_@delta
if_@apsile180then_goto_looppsi
close_unit_21
ston
stop

chmrunner refuses to work if any of the parameters passed is zero or

a negative number.

25.7 chmfinal

chmfinal is a program written in C. The syntax is

chmfinal

chmfinal analyzes the *best.txt* file to print the results translating the **GAFit** integer coefficients to the corresponding *choice* values and run once **CHARMM** using the best coefficients to compare energies. To do this, the file *chmfinal-hint* must be present. This file is created or *overwritten* by **chmconfigurator**.

<pre>\$ cat best.txt 0.171372950995 1.000000000000 2.0000000000000000000000</pre>			
Fitness: 0.05244	8000000		
\$ chmfinal # #FINAL EVALUATIO #	Ν		
"	COE	CFFICIENTS	
0 1 2	ang pe phas	er: 1.	171372950995 0000000000000 0
# # EVALUATION # #	Fitnes	ss: 0.0524480	00000
# Geometry #=============	Reference	Calculated	Difference
#	7.573800 -1.647500 -1.155300 2.582800 7.320600 4.219200 -2.859800 -4.086100 -4.005300 -2.446100 0.128900	7.577900 -1.647300 -1.155100 2.583000 7.320800 4.219000 -2.870100 -4.096400 -4.015600 -2.456400 0.118500	-0.0541% 0.0121% 0.0173% -0.0077% -0.0027% 0.0047% -0.3602% -0.2521% -0.2572% -0.4211% 8.0683%

Mvariable module

Beware of bugs in the above code; I have only proved it correct, not tried it.

Donald Knuth

The **mvariable** module is a sole C program with all the needed features to run multivariate fitting using an *analytical formula* and a file with the associated data to fit. This module is an application of the FPU code. See Section 19.

26.1 External interface

The *external interface* works as shown in Sections 21.1, 21.2, 25.1 and 25.2. This implementation uses the *autoconfigure* feature (Sections 21.1 and 25.1). See File 26.1.

Stopping an external job

You can stop a running job writing a **stop file** in the folder where it is running. The **stop file**'s name is **__STOP__**, and the text it contains is whatever you want.

```
$ echo ``stop job''> __STOP_
```

26.2 Interfacing with mvariable

Figures 26.1 and 26.2 shown the relations between programs and files:

- Dashed blue lines indicate that a tool uses the file as input.
- **red** lines indicates that a tool creates the file.

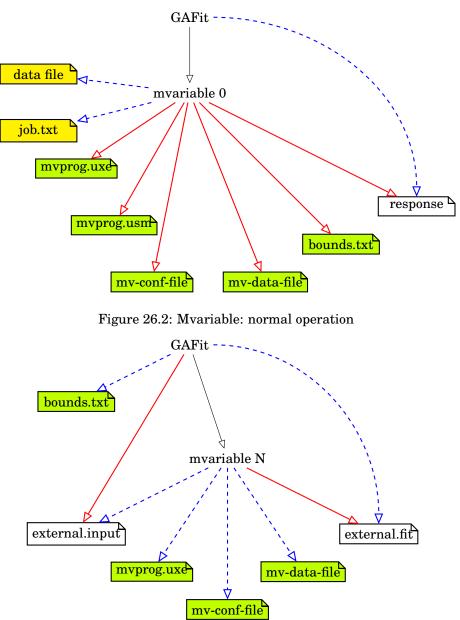
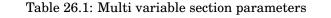


Figure 26.1: Mvariable: autoconfigure

- **black** lines indicate calls to execute a tool.
- Files filled in *yellow* indicate that they must be created or given by the user.
- Files filled in *lime* indicate that they are created in the first call to **mvariable** but used without modification along the rest of the calculations.

mvariable uses the *job.txt* for configuration. Configuration for File 26.1 and data for File 26.2 are borrowed from the Multiple Regression example, http://simon.cs.vt.edu/SoSci/converted/MRegression/ This is an example problem for Social Sciences taken from Virginia Tech's SABLE [12] where some data are fit to the *multiple regression* equation:

 $\mathbf{Predictedsalesperformance} = a + b * Intelligence + c * Extraversion$


<u> </u>
[job]
$runs: \longrightarrow \longrightarrow 1$
$evaluations: \longrightarrow 5000$
type:external_auto
command:mvariable
[print]
print_runs:_yes
[multi_variable]
coefficients:_a(0.0,2000.0),_b(0.0,100.0)_,c(0.0,100.0)
fit_variable:_fit
data_file:_predictedsalesp.txt
data_columns:_salesperson,_intelligence,_extroversion,_sales
data_headers:_2
expression:_mv_test
[mv_test]
psperform_=_a_+_b*intelligence_+c_*_extroversion;
fit =(psperform-sales)^2

File 26.1: mvariable job.txt file

The *job.txt* is shared between **GAFit** and the **mvariable** program. It has a new section **[multi variable]** read by **mvariable** to configure the problem to resolve. The configuration parameters are summarized in the Table 26.1. All of them must be set.

#salesperson_Intelligence_Extroversion_sales
#
$1 \longrightarrow 89 \longrightarrow 21 \longrightarrow 2625$
2 93 24 2700
$3 \longrightarrow 91 \longrightarrow 21 \longrightarrow 3100$
4 122 23 3150
$5 \longrightarrow 115 \longrightarrow 27 \longrightarrow 3175$
$6 \longrightarrow 100 \longrightarrow 18 \longrightarrow 3100$
$7 \longrightarrow 98 \longrightarrow 19 \longrightarrow 2700$
$8 \longrightarrow 105 \longrightarrow 16 \longrightarrow 2475$
9 112 23 3625
$10 \longrightarrow 109 \longrightarrow 28 \longrightarrow 3525$
$11 \longrightarrow 130 \longrightarrow 20 \longrightarrow 3225$
$12 \longrightarrow 104 \longrightarrow 25 \longrightarrow 3450$
$13 \longrightarrow 104 \longrightarrow 20 \longrightarrow 2425$
14 111 26 3025
$15 \longrightarrow 97 \longrightarrow 28 \longrightarrow 3625$
$16 \longrightarrow 115 \longrightarrow 29 \longrightarrow 2750$
17 113 25 3150

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$18 \longrightarrow 88 \longrightarrow 23 \longrightarrow 2600$	
20 101 16 2650	19 108 19 2525	
	20 101 16 2650	

Parameter	Туре	Comment	
coefficients	string	List of coefficients with their limits. The syntax is the same as shown in page 185 and in Table 25.1 without the @ symbol and without the <i>format</i> part.	
data file	string	Name of the data file to fit	
data columns	string	List of column names present into the data file. This names can be used in the <i>expression</i> .	
data headers	integer	Number of lines to skip into data file	
expression	string	Name of the section where is the <i>expression</i> used to fit data from <i>data file</i> using the <i>coefficient names</i> , the <i>data file column names</i> , the <i>fit variable</i> and any intermediate variables.	
fit variable	string	name of the variable into the expression section used as the calculation result.	

Using this information, **mvariable** configures **GAFit** and build the *bounds.txt* file. For each line from *data file* the *expression section* is evaluated and the fit *variable* is obtained. The *fit* is the sum of all the *fit variables* over the whole data file.

An example output running **GAFit** with the Files 26.1 and 26.2 is shown below:

+ GAFit 1	+ .3d Build:314
Fri Mar	9 16:20:27 2018
+	+
[]	
Mvariable Ana	lysis
external inp:	external.input
	external.fit
bounds file :	
coefficients: fit variable:	a(0.0,2000.0), b(0.0,100.0) ,c(0.0,100.0)
	predictedsalesp.txt
	salesperson, intelligence, extroversion, sales
headers :	
expression :	
print code :	110
psperform = a	+ b * intelligence + c * extroversion;
fit = (psperf	orm - sales)^2
+	+
Setting	s for job
l Command	
	[bounds.txt]
	l input:[external.input]
	l fit:[external.fit] oefficients: 3
	ptions: runs yes, ga settings no
+	+
run: 1	1
this ru	n's seed:1520608828
+	+
Eval.	Best fit.
100	2.29229e+06

200 300 400 500 600 700		2.17067e+06 1.96761e+06 1.93755e+06 1.93755e+06 1.90796e+06 1.901e+06
[] 4800 4900 5000 5000		1.87477e+06 1.87477e+06 1.87477e+06 1.87477e+06
# #Results # 1 2 3	a b c	+1010.454994214965 +8.235963226679 +48.923735630054
	300 400 500 600 700 [] 4800 4900 5000 5000 5000 5000 5000 5000 2000 5000 2000 5000 2000 5000 200 200 2000000	300 400 500 600 700 [] 4800 4900 5000 5000 5000 \$000 \$000 \$000 \$000 \$

26.3 mvtest

A command **mvtest** is provided to test the *best.txt* –the default *coefficient file* parameter– coefficients with the data from *data file*. The configuration is taken from the *job.txt* file.

The syntax is:

```
$ mvtest -h
mvtest v0.1 (c)GAFit toolkit - 2015
Usage: mvtest [coefficient-file]
```

Below is a **mvtest** run using the above results for the *best.txt* file. There are 20 points in the *data file*, each of one is used to calculate the *fit variable* –third column– and the sum is the overall *fit* shown above – 1.874780946116e+06–. A better result is obtained using a higher number of *evaluations*.

\$ mvtes	st		
point	0:	20633.27276	
point	1:	64004.74303	
point	2:	99217.54889	
point	3:	103.94610	
point	4:	12025.52765	
point	5:	154400.77546	
point	6:	1699.85762	
point	7:	29553.01349	
point	8:	321534.59538	
point	9:	57077.50398	
point	10:	29354.08717	
point	11:	127051.03437	
point	12:	172950.47541	
point	13:	31112.05990	
point	14:	191076.30652	
point	15:	404158.77638	
point	16:	296.46434	
point	17:	68399.11741	
point	18:	88848.19284	
point	19:	1283.64736	
sum of	fits:	1874780.94606	

Generic module

I don't believe in astrology; I'm a Sagittarian and we're skeptical.

Arthur C. Clarke

The **generic module** is intended to generalize that we have already learned in the previous modules. Its target is to interface a broad range of external programs with a little effort from the user.

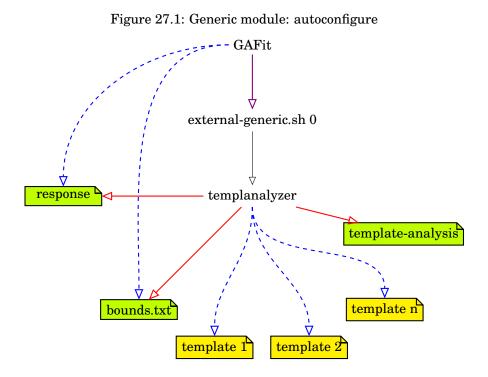
Some of the key features are:

- It can parameterize more than one input file at once using many templates. The coefficients to parameterize could be sparse and repeteated along the templates.
- It can run a fixed¹ number of individual calculations in parallel.
- Each individual calculation could be run in its own folder and deleted afterwards.
- Fitting data and other interesting information were extracted out from the run folder by **gfitter** tool before its deletion.
- The fit compares a list of reference values with a list of calculated values using any valid implementation. Could be test points or some of cases or specific problems... The implementation is open but allways a comparison of two lists of floating point numbers are done.
- The information gathered about the whole calculation is shown in the file *report_best.txt* where the best result into each distance slice –from the current best set of coefficients– are presented.

 $^{^1\}mathrm{No}$ so as the MOPAC module.

27.1 External interface

The *external interface* works as shown in Sections 21.1, 21.2, 25.1 and 25.2. This implementation uses the *autoconfigure* feature, Sections 21.1, 25.1.


Stopping an external job

You can stop a running job writing a **stop file** in the folder where it is running. The **stop file**'s name is **__STOP__**, and the text it contains is whatever you want.

```
$ echo ``stop job''> __STOP_
```

27.2 Interfacing with generic

Figure 27.1 –during the autoconfigure phase– and Figure 27.2 –running the calculations– show the relations between programs and files.

- Dashed blue lines indicate that a tool uses the file as input.
- **red** lines indicates that a tool creates the file.
- **black** lines indicate calls to execute a tool.
- **violet** lines show that **GAFit** creates the file and intermediately execute it.

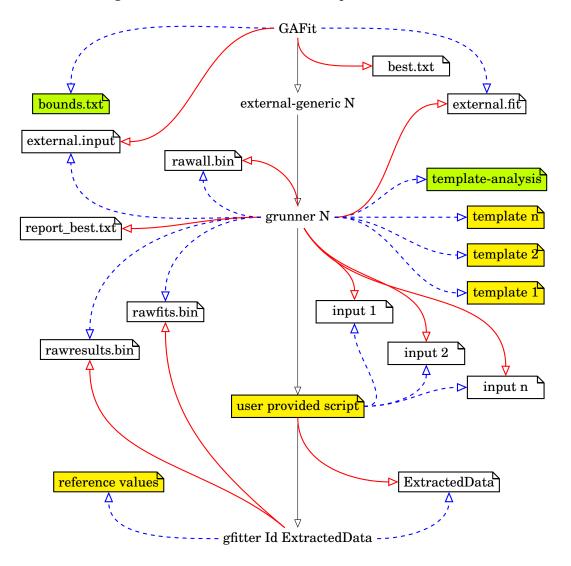


Figure 27.2: Generic module: normal operation

- Files filled in *yellow* must be created or given by the user.
- Files filled in *lime* are created in the first call but used without modification along the rest of the calculations.

The Table 27.1 shows the files used in the above figures.

27.3 The example

This example is included from the distribution in the *generic* folder into *simple-mode-examples* directory. We shall use this example to explain the **generic module**'s behaviour.

Table 27.1: Generic module file	es. User provided files are in	yellow , one
time files created by GAFit in	lime .	

File	Description
job.txt	Configuration file. Some of the generated files are built using this information.
external-generic.sh	Automatically generated by GAFit. It glues to- gether the tools needed to acomplish the task.
templanalyzer	It analyses templates and builds a combined <i>template-analysis</i> file with the results.
grunner	It actually runs a bunch of individual jobs <i>-a user</i> <i>provided script-</i> in parallel. It builds the input files needed from templates using info from <i>template-</i> <i>analysis</i> file.
user provided script	It runs each individual calculations on input data and generates output extracting usable information to <i>ExtractedData</i> file and calls gfitter to evaluate it.
gfitter	Using <i>ExtractedData</i> and the <i>reference values</i> it evaluates the results and save some interesting data for statistical accounting.
response template-analysis	A generated file to automatically configure GAFit . It is a generated file by templanalyzer , summa- rizing the types and diverse information about the coefficients to take into account.
bounds.txt	It is a generated file to establish the bounds for each variable.
template 1, template 2,, template n	Template sources for one individual job input files.
external.input	The individual coefficients values generated by GAFit .
external.fit	Evaluation results.
input 1, input 2,, input n	Input files to one individual job.
reference values	A list of reference values to compare to.
ExtractedData	A list of useful data from calculations, ready to be evaluated against <i>reference values</i> .
report_best.txt	Information about the distribution of individuals.
rawall.bin	Intermediate results between generations.
rawfits.bin	Fits for each individual in machine binary format.
	$fit = \left(calculated - reference \ value ight)^2 * weight$
rawresults.bin	Evaluation of each individual: test points with their calculated values in machine binary format.

Job configuration

The example *job.txt* file is shown in File 27.1 where the specific configuration options from Table 27.2 are used. This is a simple job file with only one template.

If there is more than one template, the coefficient set names and their limits are taken from the @expressions and passed to the genetic algorithm.

For example, if we have 3 templates with 2, 5 and 3 @expressions respectively, we have 10 coefficients in each individual from the genetic algorithm. This @expressions generate also the *bounds.txt* file with the upper and lower limit of each coefficient and their own type.

More in @expressions: Section 24.

Taking into account this, the Job's configuration options meanings are:

application Module class. To use this module it must be generic.

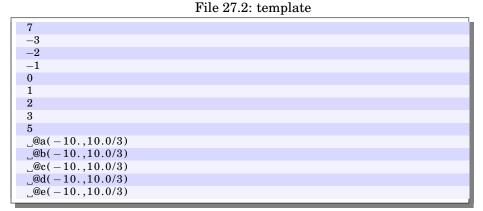
ncores Number of individual calculations running in parallel.

- **executable** Shell script or a program –provided by the user– to run for each *individual* calculation.
- **template** List of templates. A set of templates generates a set of input files to the **executable** program or shell script, so in these input files this module will accommodate the whole coefficient set as stated from the @expressions used into them.
- **reference values** List of values to compare with a test input to evaluate the fit.

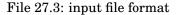
Option	Default value	Meaning
ncores	1	Number of parallel jobs. One per set of coeffcients.
template	template	One or more templates to pro- cess separated by white space.
executable	must be set, no de- fault value	A user provided script to run per coefficient set (individual).
reference values	reference.values	Reference data to compare with.

Table 27.2: Configuration options to generic module in job.txt file

The parameter **population** was not specified, so its value is 100 –See Section 15.1–.


File 27.1: job.txt, using generic module

[job]	ĺ
$\operatorname{runs}: \longrightarrow \longrightarrow 1$	
$evaluations: \longrightarrow 5000$	
application: _generic	
ncores:_1	
executable: / genericscript.sh	
template: _template	
reference_values:_reference.values	
[print]	
print_runs:_yes	


In this file we configure **GAFit**. You can see it in File 27.1.

The template

The File 27.2 shows the template used in this example where a piece of the text are represented by @expressions. See Section 24. This expressions will be replaced by **GAFit** with the coefficient values from genetic algorithm in any template included in the *job.txt* file.

The input file generated from this template shall be read by the program **testgeneric**. **testgeneric** expects the format of File 27.3. The values calculated, using the test points as input, will be compared with the reference values as the reference values are the expected values for those test points.

<u>_number_of_points</u>
point_1
point_2 test points
point_n
number_of_polinomial_coefficients
_coefficient_1
coefficient_2 coefficient values

We need some well known **test points** with their *expected* values – the reference values— to calculate the fit. The **generic module** doesn't impose where this values must be due the fact that they are not necessary to calculate the fit. **GAFit** only needs their *expected* values –the reference values— and the values calculated by **testgeneric** using the **test points**.

Table 27.3:	Test points	and their	corresponding	reference	values from the
example.					

	Reference values file		
Test Point	name	value	weight
-3	p1	40	1
-2	p2	0	1
-1	р3	0	1
0	p4	4	1
1	p5	0	1
2	p6	0	1
3	p7	40	1

In this example, we include the test points in the template where they are read from the test program to obtain the calculated values. Note that the test points are in the input file generated from the template and their expected values are in the *reference.values* file. They must be correlated: first test point expected value with the first reference value, second test point with the second reference value, and so on.

Other options are possible upon the type of program to parameterize behavior.

The reference values

The reference values are the values obtained from the known set of test points to check the goodness of the model. An example is shown in File 27.4 and the format is in File 27.5.

There are three columns:

- the reference value
- the weight
- the name of the reference

File 27.4: reference.values file

$40_{1} p1$
$_0$
$_0_{}1_{}p_3$
$_4$
$_0$
$_0$
$_{-}40_{}1_{}p7$

$value1 \rightarrow weight1 \rightarrow name1$
$value2 \rightarrow \longrightarrow weight2 \rightarrow \longrightarrow name2$
$value4 \rightarrow \longrightarrow weight3 \rightarrow \longrightarrow name3$
$valuen \rightarrow weightn \rightarrow namen$

File 27.5: reference values file format

The configuration and calculation phases

GAFit calls a script named **external-generic.sh** –File 27.6– which is automatically generated by **GAFit** and is used, for the first time, to configure itself –Figure 27.1– and for every generation of coefficients –Figure 27.2– to do the calculations.

File 27.6: external-generic.sh

1	#!/bin/sh
2	<pre>export INPUT_TEMPLATE="template"</pre>
3	<pre>export EXTERNAL_INPUT=external.input</pre>
4	export EXTERNAL_FIT=external.fit
	export N_CORES=4
6	<pre>export EXTERNAL_EXECUTABLE = ./ genericscript . sh</pre>
7	export REFERENCE_VALUES=reference.values
8	
9	if ["\$1" -eq "0"]
10	then
11	templanalyzer
12	else
13	grunner \$1
14	fi
6 7 8 9 10 11 12 13	<pre>export EXTERNAL_EXECUTABLE=./genericscript.sh export REFERENCE_VALUES=reference.values if ["\$1" -eq "0"] then</pre>

templanalyzer

This script is called with a "0" as argument on the very first moment running the **templanalyzer** program which configures **GAFit** and it analyzes the templates creating the files needed for the long run.

The templates go through the environment variable INPUT_TEMPLA TE as shown in File 27.6 or in the command line arguments. The second takes precedence.

grunner

After the first run, the script –which is called with an argument distinct of "0": the number of individuals in the generation– executes the **grunner** program which is in the duty to calculate each generation of individuals –sets of coefficients– generated by **GAFit**.

grunner prepares, from the templates, the input files replacing each @expression with the correspondent coefficient for every template and for every individual.

The input files are in the form "X.template", where "X" is one or more upper case letters -see 15.4- and "template" is the name of the template used to create the file.

So, if we have two templates "t0" and "t1", the input files are: A.t0, A.t1, B.t0, B.t1...AA.t0, AA.t1, ... and so on. Below you can see some of the files generated by **grunner** in the example:

\$ 1S					
A.data	AW.data	BS.data	CO.data	R.data	
A.output	AW.output	BS.output	CO.output	R.output	
A.template	AW.template	BS.template	CO.template	R.template	
AA.data	AX.data	BT.data	CP.data	S.data	
AA.output	AX.output	BT.output	CP.output	S.output	
AA.template	AX.template	BT.template	CP.template	S.template	
[]					

Once the input files are ready, **grunner** calls for each individual the **user provided script** –Table 27.2– passing the input file names –A, B, C, ..., AA, AB, ...– as argument.

The user provided script

The example's **user provided script** is shown in File 27.7. The script uses its argument to access the files produced for each individual executing the commands needed to accomplish the task and lately the **gfitter** program to account the results.

File 27.7: Example's user provided script: genericscript.sh

```
1 #!/bin/sh
2 #echo "_____ begin $1 _____"
3 ./testgeneric < $1.template > $1.output
4 ./extractdata < $1.output > $1.data
5 gfitter $1 $1.data
6 rm $1.template $1.output $1.data
7 #echo "_____ end $1 _____"
```

If the argument is AA, the **genricscript.sh** executes the commands:

```
./testgeneric < AA.template > AA.output
./extactdata < AA.output > AA.data
gfitter AA AA.data
rm AA.template AA.output AA.data
```

The **testgeneric** program reads the file *AA.template* created by **grunner** from the template "*template*" –File 27.2–, producing the file *AA.output*.

File 27.8: AA.template file

	1	
7		
-3		
-2		
-1		
0		
1		
2		
3		
5		
$\4.877000$		
-3.636000		
$\2.432000$		
$_0.752000$		
_0.833000		

processing input
31.312000
-0.021000
-3.592000
-4.877000
-9.360000
-2.533000
50.104000
done

File 27.9: AA.output file

extractdata –File 27.10– processes this file and produces *AA.data* stripping out the first and last line. This was unnecessary if **testgeneric** does not generate those lines. **extractdata** is used only to increase the difficulty of a very simple system.

File 27.10: extractdata.c

1	/*
2	<pre>(c) GAFit Toolkit \$Id: extractdata.c 378 2019-12-04 17:52:09Z ro \$</pre>
3	*/
4	
5	#if HAVE_CONFIG_H
6	<pre>#include <config.h></config.h></pre>
7	#endif
8	
	<pre>#include <stdio.h></stdio.h></pre>
	<pre>#include <stdlib.h></stdlib.h></pre>
11	
	#define MAXLINE 200
13	char *
	newLine ()
16	
17	return malloc (sizeof (char) * MAXLINE);
18	}
19	
20	int
21	main (void)
22	
23	int counter = 0;
24	char **list = NULL;
25 96	<pre>char *line = newLine ();</pre>
26 27	while (1)
21	
20	fgets (line, MAXLINE, stdin);
30	if (feof (stdin))
31	break;
32	counter++;
33	list = realloc (list, sizeof (char *) * (counter));
34	list[counter - 1] = line;
35	line = newLine ();
36	}
37	for (int i = 1; i < counter -1 ; i++)
38	<pre>{ printf ("%s", list[i]);</pre>
39 40	$\frac{\text{print}(\% \text{s}, \text{ist}[1]);}{}$
40 41	
71	,

File 27.11: AA.data file

31.312000	
-0.021000	
-3.592000	
-4.877000	
-9.360000	
-2.533000	
50.104000	

The example program: testgeneric

The program used in the example is shown in File 27.12. This program reads from *standard input* and writes to *standard output*.

It calculates a polynomial:

$$y = \sum_{0}^{i} a_{i} x^{i}$$

File 27.12: testgeneric.c

```
1 /*
2
   (c)GAFit toolkit $Id: testgeneric.c 378 2019-12-04 17:52:09Z ro
      $
3 */
4 #if HAVE_CONFIG_H
5 #include <config.h>
6 #endif
8 #include <stdio.h>
9 #include <math.h>
10 #include <stdlib.h>
11 #include <string.h>
12
13 #define MAXLINE 100
14
15 #define NINT 1
16 #define NDOUBLE 2
17
18 #define OUTPUT_EXT ".output"
19 #define INPUT_EXT ".input"
20
21 union Number
22 {
23
    int n;
    double d;
24
25 };
26
27 typedef union Number NUMBER;
28
29 NUMBER
30 getThing (FILE * f, int type)
31 {
    char line[MAXLINE + 1];
32
33
    NUMBER number;
    number.n = 0;
34
    while (fgets (line, MAXLINE, f) != NULL)
35
36
      {
```

```
char *p = line;
while (*p == '_' ' || *p == '\t')
37
38
39
           p++;
         if (*p == '\r' || *p == '\n')
40
           continue;
41
42
         switch (type)
43
           {
           case NINT:
44
             sscanf (line, "%d", &number.n);
45
             return number;
46
47
           case NDOUBLE:
             sscanf (line, "%lf", &number.d);
48
49
             return number;
50
           }
51
         break;
52
       }
53
    return number;
54 }
55
56 int
57 getInt (FILE * f)
58 {
59
    return getThing (f, NINT).n;
60 }
61
62 double
63 getDouble (FILE * f)
64 {
65
   return getThing (f, NDOUBLE).d;
66 }
67
68 double
69 func (double x, double a[], int n)
70 {
71
    double ret = 0;
    int i;
72
    for (i = 0; i < n; i++)
73
74
      {
        ret += a[i] * pow (x, (double) i);
75
76
       }
77
    return ret;
78 }
79
80 int
81 main (int argc, char **argv)
82 {
    double *coefs;
83
    double *points;
84
    double *yf;
85
86
87
    int ncoefs, npoints;
88
    FILE *f;
89
90
    f = stdin;
91
    npoints = getInt (f);
92
    points = (double *) malloc (npoints * sizeof (double));
93
    yf = (double *) malloc (npoints * sizeof (double));
94
95
    for (int i = 0; i < npoints; i++)
96
97
      {
        points[i] = getDouble (f);
98
```

```
99
100
101
       ncoefs = getInt (f);
       coefs = (double *) malloc (ncoefs * sizeof (double));
102
103
104
       for (int i = 0; i < ncoefs; i++)
105
          {
             coefs[i] = getDouble (f);
106
107
          }
108
       f = stdout;
fprintf (f, "processing_input\n");
for (int i = 0; i < npoints; i++)</pre>
109
110
111
112
            yf[i] = func (points[i], coefs, ncoefs);
fprintf (f, "%lf\n", yf[i]);
113
114
115
       fprintf (f, "done\n");
116
117 }
```

The **testgeneric** program:

- 1. reads from input the number of points to calculate, line 92.
- 2. reserves memory for the points and the results, lines 93-94.
- 3. reads the points from input into memory, lines 96-99.
- 4. reads the number of coefficients from input, line 101.
- 5. reserves memory for the coefficients, line 102.
- 6. reads the coefficients from input, lines 104-107.
- 7. calculates the result and prints it to output, lines 110-116.

The gfitter program

gfitter has two arguments: the input file name and the calculated data –in this example: *AA* and *AA*.*data* file–.

gfitter calculates the fit as:

$$\mathbf{fit} = \sqrt{\sum_{i=1}^{n} \left[(\mathbf{ReferenceValues}_i - \mathbf{calculated}_i)^2 * \mathbf{weight}_i \right]}$$

n is the number of individuals (or coefficient sets)

reference is the reference value, File 27.4

calculated is the calculated value from the coefficient set

weight is the weight of each reference value, File 27.4

gfitter also works as a probe, extracting data from the actual calculation. This information is summarized by **grunner** and written to a dynamical report: *report_best.txt*.

The first argument, the input file name, is to know where to account the data.

The second argument is a list of the results of the actual calculation -File 27.9- to compare with the reference values -27.4- line by line.

The report

Every generation calculation, **GAFit** updates the file *report_best.txt* with information about the process.

This file contains in the very first line the best result found till now, and compares the rest of generation individuals with it.

The module groups the individuals by slices using the distance from the best, and print the best result found into each slice. Take into account that these slices are dynamically set as just the best found till now is varying as time goes by.

For each individual selected –the best in its slice–, the file includes the distance from best, the coefficients and the calculated reference values.

. —	number	(Ut	distance			coefficients (5)		
 -				+	+	coefficients	+ -	
best		- + ÷ 5						ſ
	= +	- + 	aistance	a -	- -		a -	U .
_	-	9.59965	0	2.489	-4.46	-3.501	0.605	0.84
_	2	9.79519	0.325384	2.814	-4.463	-3.497	0.62	0.84
_	3 3	10.1967	0.463923	2.431	-4.92	-3.499	0.621	0.841
_	4	9.98381	0.787671	1.703	-4.509	-3.499	0.62	0.84
_	5	10.1196	0.95062	3.42	-4.652	-3.503	0.612	0.84
_	9	10.2894	1.27224	1.217	-4.479	-3.499	0.621	0.841
_		11.9396	1.59602	2.482	-2.864	-3.505	0.603	0.837
		10.603	1.77602	4.265	-4.459	-3.501	0.596	0.839
_	6	11.1184	1.93428	4.423	-4.485	-3.5	0.626	0.841
_	10	11.2439	2.07207	4.561	-4.466	-3.499	0.621	0.841
_	11	11.4902	2.32009	0.169	-4.45	-3.5	0.623	0.841
_	12	11.8879	2.58743	-0.098	-4.419	-3.502	0.628	0.842
_	13	12.2058	2.78304	-0.294	-4.462	-3.5	0.62	0.84
_	14	12.4943	2.97926	5.465	-4.599	-3.501	0.615	0.838
_	15	19.7322	3.33111	2.509	-1.129	-3.501	0.624	0.841
_	16	12.7321	3.64976	-0.965	-5.501	-2.957	0.71	0.842
_	17	14.1154	3.81652	-1.322	-4.663	-3.506	0.635	0.842
_	18	14.2142	3.89533	6.377	-4.698	-3.503	0.625	0.838
_	19	174.082	4.30802	2.477	-4.463	-3.501	4.913	0.841
_	20	13.8305	4.59173	-2.072	-4.711	-3.04	0.647	0.903
	21	14.3683	4.85898	-2.312	-4.938	-2.93	0.652	0.898
	22	14.5021	5.1783	-2.602	-5.074	-2.796	0.755	0.844
	23	14.6799	5.41265	-2.812	-5.202	-2.709	0.74	0.853
_	24	15.1065	5.6913	-3.094	-5.399	-2.936	0.746	0.853
_	25	14.7976	5.89112	-3.393	-4.611	-3.222	0.619	0.921
_	26	15.0748	6.21397	-3.706	-4.648	-3.059	0.643	0.897
_	27	16.3683	6.54948	-3.97	-5.38	-2.943	0.743	0.856
_	28	16.0436	6.84097	-4.279	-4.566	-2.515	0.697	0.806
_	29	15.6878	7.19082	-4.524	-5.2	-2.097	0.672	0.791
_	30	704.124	7.65978	-2.132	-4.722	-3.507	0.662	6.943
_	31	56.4471	8.21746	-5.206	-3.512	-6.223	0.53	0.835
	32	14.5729	9.15301	-4.154	1.684	-2.264	0	0.784
	33	15.5947	10.0211	-4.396	2.674	-2.238	-0.12	0.777
	34	19.817	11.8959	-6.094	3.629	-2.18	-0.209	0.768
	35	189.022	12.4643	9.494	-5.618	6.03	3.444	-1.619
_	36	199.899	13.0856	9.705	-5.494	6.627	3.552	-1.774
_	37 1	790.6 1	15.8073	9.97 1	2.342	5.666	-0.271	-7.087
	38	194.6	17.7067	-10	6.839	-2.21	-4.612	-0.16
_	39	423.881	18.1285	-5.98	9.277	1.167	-5.061	-2.944
_	40	216.028	19.9962	-5.45	9.985	7.733	-0.647	1.466

File 27.13: report best.txt left side

			reference	J			
<u> </u>	pl cal-	p2 1	p3 1	hq 1	gd	1 9d	7q
	culated	0	0	4	0	0	40
- +		_ Τ	- Τ		- T	_ Τ	
	36.065 1	6.005	3.683	2.489	-4.027	-2.155	41.975
_	36.03	6.232	4	2.814	-3.686	-1.7	42.732
_	37.054	6.763	points		-4.526	-2.981	41.068
_	35.039	5.205			values	-2.911	41.465
_	37.365	7.256	4.797	3.42	Adduce	-1.56	42.501
_	34.517	4.667	2.417	1.217	-5.299	-3.313	41.177
_	31.045	2.758	2.075	2.482	-2.447	0.95	46.423
_	38	7.835	5.466	4.265	-2.26	-0.465	43.43
_	37.597	7.841	5.623	4.423	-2.095	-0.083	44.491
_	37.822	7.985	5.748	4.561	-1.942	0.057	44.56
_	33.319	3.541	1.337	0.169	-6.317	-4.291	40.261
_	32.887	3.18	1.033	-0.098	-6.549	-4.448	40.285
_	32.892	3.11	0.888 1	-0.294	-6.796	-4.818	39.6
_	39.026	9.147	6.786	5.465	-1.182	0.591	44.642
_	25.66	-0.773	0.354	2.509	-0.656	4.695	52.582
_	37.957	6.001	1.711	-0.965	-7.871	-4.643	43.291
_	32.17	2.372	0.042	-1.322	-8.014	-6.12	38.482
_	39.947	10.169	7.785	6.377	-0.361	1.377	45.509
-	-80.173	-28.449	-0.633	2.477	0.267	32.307	158.351
_	40.375	4.462	-0.145	-2.072	-8.273	-4.03	47.047
_	41.266	4.996	-0.058	-2.312	-8.63	-4.324	46.846
_	35.435	3.826	-0.235	-2.602	-8.873	-4.39	45.761
_	37.526	4.484	-0.206	-2.812	-9.13	-4.484	46.274
_	35.63	3.64	-0.524	-3.094	-9.83	-6.02	43.52
_	39.33	2.725	-1.702	-3.393	-9.686	-5.815	45.09
_	38.003	2.562	-1.863	-3.706	-9.873	-5.742	44.837
_	34.958	2.77	-1.42	-3.97	-10.694	-6.862	42.8
_	33.251	2.113	-2.119	-4.279	-9.857	-4.999	43.493
_	38.13	4.768	-1.302	-4.524	-10.358	-5.28	43.218
_	524.98	99.076 1	5.364	-2.132	-2.756	90.78 1	532.396
_	2.648	-13.954	-7.612	-5.206	-13.576	- 19.522	10.196
_	33.922	-4.034	-7.318	-4.154	-3.95	2.702	44.026
_	33.617	-5.304	-8.411	-4.396	-3.303	3.472	43.181
_	31.25	-8.112	-10.926	-6.094	-4.086	3.06	41.738
 _	-143.509	-8.606	16.079	9.494	11.731	24.026	8.759
-	-153.768	-9.599	16.5	9.705	12.616	25.257	5.076
 _	-512.792	-83.274	6.478	9.97	10.62	-78.242	-513.374
_	61.157	1.818	-14.597	-10	-10.143	-44.618	-146.857
	-125.125	-26.482	-11.973	-5.98	-3.541	-70.35	-342.757
_	170.407	34.144	-5.589	-5.45	13.087	63.732	195.379

File 27.14: report best.txt right side

Appendices

Source code

A.1 Source files

Source files are listed in the table A.1. All files are related to each other. Same functions and subroutines are called from any compiled executables. So, a behaviour change in one means a change in the others.

File/Directory	Description	Comments
analytical	interface between potential	it has dependencies on <i>nullist</i> , pack,
	stuff and analytical expres-	fpu, compiler and bytecodes
	sions subsystem	
aplication.c	simple configuration	
aplication.h	simple configuration	
autoweights.c	stuff to use automatic weights	
autoweights.h	autoweights header	
bounds.c	stuff to read bounds	
bounds.h	bounds header	
bytecodes	defines bytecodes for fpu	
charmmm	interface with charmm	
cnames.c	coefficient names stuff	
cnames.h	cnames header	
crossover.c	crossover code	
crossover.h	crossover header	
compiler	compiles expressions into byte-	
	code	
eval.f	fortran entry point	
evaluation.c	evaluation	
evaluation.h	evaluation header	
final.c	prints results	
final.h	final header	
finput.c	read variables and setup sys-	
fitviewc	tem	
1101101110	plots data	
flyctl	rutines to stop running jobs virtual FPU	
fpu	, in that i i i i	
ga.c	main program	

Table A.1: Source files

File/Directory	Description	Comments
ga.h	ga header	
generic	generic module stuff	
global.h	C common variables	
inputline	subroutines to read files from	it heavily depends on the libc function
-	С	getdelim
integer.c	helper functions to integer co-	
-	efficients	
integer.h	integer header	
inter	inter module stuff	
interface.f	glue to link all together	
interface.h	interface header	
job.txt	job configuration	modify as per job basis
literals	subroutines to support auto-	
	matic coefficient names	
mvariable	external interface to deal with	
	multivariate calculus	
mopac	MOPAC interface stuff	
mutation.c	mutation code	
mutation.h	mutation header	
needle	analise system structure	use it to generate <i>atom2type</i> and
		charges files
nullist	implements null-terminated	
	list	
pack	code and decode bytecode fpu	
-	programs	
parameters	parameters and settings code	
potentials.f	potentials stuff	modify to introduce new potentials
rand.c	random stuff code	
rand.h	random header	
rstrings	strings generic functions	
selection.c	selection code	
selection.h	selection header	
stats.c	stats stuff, prints intermediate	
	results	
stats.h	stats header	
ufpu.c	ufpu code	
userpotential.f	user potential fortran template	modify to introduce a fully custom po-
		tential
utils.c	helper functions	
utils.h	utils header	

A.2 Analytical job

This code deal with expressing potentials as analytical expressions. It depends on $\hbox{A.4.}$ C language.

- analytical.h
- analytical.c

A.3 Application

Simple configuration shortcuts. C language.

- application.h
- application.c

A.4 Fpu routines

This code implements a virtual calculator: it compiles analytical expressions to packed chunks of bytecode, and run the bytecode in a virtual FPU. C language.

- bytecodes.h
- bytecodes.c
- nllist.h
- nllist.c
- pack.h
- pack.c
- ucompiler.h
- ucompiler.c

A.5 GAFit

Entry routines and main loop. C language. It depends on A.2. A.7, A.4, A.7, A.7, A.6 and A.8. See section 14.2 and Figure 1.1.

- ga.h
- ga.c

A.6 Genetic Algorithm Core

GA routines. C language.

Crossover

- crossover.h
- crossover.c

Mutation

- mutation.h
- mutation.c

Selection

- selection.h
- selection.c

Stats

- stats.h
- stats.c

Utils

- utils.h
- utils.c

A.7 MODULES

Here is implemented the interface with external programs. C, Fortran and Perl languages.

Module inter

Potential base routines like the implemented internal and user-coded potentials. C and Fortran languages.

- \bullet eval.f
- final.h
- final.c
- finput.c
- global.h
- interface.h
- interface.f
- potentials.f
- userpotential.f

Flyctl

This code addresses the external job stopping problem.

- flyctl.h
- flyctl.c

MOPAC module

Interface with **MOPAC**.

- extractor
- fitter.f
- injector.c
- mopac.h
- mopac.c
- shepherd.c
- lstimes.c
- lsexdata.f

CHARMM module

Interface with CHARMM.

- chmconfigurator.c
- chmreference.c
- chmrunner.c
- charmm.h
- charmm.c
- chmbest.c

Multivariate module

The fpu routines are used to deal with multivariate calculus.

- mvariable.h
- mvariable.c

Generic module

See Section 27.

- common.h
- common.c
- grunner.c
- gfitter.c
- templanalyzer.c

A.8 Miscellaneous

Arguments

Program arguments stuff. C language.

- arguments.h
- arguments.c

Bounds

Custom routines to read bounds files. C language.

- bounds.h
- bounds.c

Cnames

Coefficient names stuff. C language.

- cnames.h
- cnames.c

Inputline

Custom routines to read lines and text from configuration and data files. C language.

- line.h
- line.c

Integer

Code to support integer coefficients. C language.

- integer.h
- integer.c

Literals

Routines to support automatic coefficient names. C language.

- literals.h
- literals.c

Parameters

Code to deal with program parameters. C language.

- parameters.h
- paramenters.c

Rand

Random stuff. C language.

- rand.h
- rand.c

Rangecf

Coefficients with range. C language.

- rangecf.h
- rangecf.c

Rstrings

C strings custom routines. C language.

- rstrings.h
- rstrings.c

A.9 Tools

C, Java and Perl languages.

Fitview

Tool to create some **gnuplot** plots.

• fitview.c

Needle

Perl tool to create the *atom2type* file from a geometry file.

• needle

Ufpu

Utility to test analytical expressions as potentials.

• ufpu.c

B

License

GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program—to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based on the Program.

To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work.

A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

- a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
- b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices".
- c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
- d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

- a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
- b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than

your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.

- c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
- d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
- e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

"Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

License

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

- a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
- b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or

- c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
- d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
- e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
- f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-RECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN-TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

References

- Roberto Rodríguez-Fernández, Francisco B. Pereira, Jorge M.C. Marques, Emilio Martínez-Núñez, and Saulo A. Vázquez. "GAFit: A generalpurpose, user-friendly program for fitting potential energy surfaces". In: *Computer Physics Communications* 217 (2017), pp. 89–98. ISSN: 0010-4655. DOI: https://doi.org/10.1016/j.cpc.2017.02.008. URL: http://www.sciencedirect.com/science/article/pii/S0010465517300607.
- [2] J. M. C. Marques, F. V. Prudente, F. B. Pereira, M. M. Almeida, A. M. Maniero, and C. E. Fellows. "A new genetic algorithm to be used in the direct fit of potential energy curves to ab initio and spectroscopic data". In: *Journal of Physics B: Atomic, Molecular and Optical Physics* 41.8 (2008), p. 085103. URL: http://stacks.iop.org/0953-4075/41/i=8/a=085103.
- [3] Ira N. Levine. Quantum Chemistry. 7th ed. Pearson Education Inc, Boston, Feb. 2014, p. 720.
- [4] Angels Gonzalez-Lafont, Thanh N Truong, and Donald G Truhlar. "Direct dynamics calculations with NDDO (neglect of diatomic differential overlap) molecular orbital theory with specific reaction parameters". In: *The Journal of Physical Chemistry* 95.12 (1991), pp. 4618– 4627.
- [5] Zahra Homayoon, Saulo A. Vázquez, Roberto Rodríguez-Fernández, and Emilio Martínez-Núñez. "Ab Initio and RRKM Study of the HC-N/HNC Elimination Channels from Vinyl Cyanide". In: *The Journal* of Physical Chemistry A 115.6 (2011). PMID: 21261315, pp. 979–985. DOI: 10.1021/jp109843a.
- [6] Roberto Rodriguez-Fernandez, Saulo A. Vazquez, and Emilio Martinez-Nunez. "Collision-induced dissociation mechanisms of [Li(uracil)]+". In: *Phys. Chem. Chem. Phys.* 15 (20 2013), pp. 7628–7637. DOI: 10. 1039/C3CP50564B.

- [7] Thomas Weise. Global Optimization Algorithms Theory and Application. en. Second. Online available at http://www.it-weise.de/Accessed 1 April 2014. Self-Published, June 2009. URL: http://www.it-weise.de/.
- [8] Kalyanmoy Deb and Ram Bhushan Agrawal. "Simulated binary crossover for continuous search space". In: *Complex Systems* 9 (1994), pp. 1– 34.
- [9] Kalyanmoy Deb and Hans-georg Beyer. "Self-Adaptive Genetic Algorithms with Simulated Binary Crossover". In: *Evol. Comput.* 9 (2 June 2001), pp. 197–221. ISSN: 1063-6560. DOI: http://dx.doi.org/ 10.1162/106365601750190406.
- [10] Larry J. Eshelman and J. David Schaffer. "Real-Coded Genetic Algorithms and Interval-Schemata". In: *FOGA*. 1992, pp. 187–202.
- [11] Charles FF Karney. "Quaternions in molecular modeling". In: Journal of Molecular Graphics and Modelling 25.5 (2007), pp. 595–604.
- [12] Virginia Tech's SABLE. *Statistics Activity-Based Learning Environment (SABLE)*. URL: http://simon.cs.vt.edu/SoSci/converted/.

Other interesting references to the reader

- Marcos M Almeida, Frederico V Prudente, Carlos E Fellows, Jorge MC Marques, and Francisco B Pereira. "Direct fit of spectroscopic data of diatomic molecules by using genetic algorithms: II. The ground state of RbCs". In: Journal of Physics B: Atomic, Molecular and Optical Physics 44.22 (2011), p. 225102.
- M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. *Nonlinear Programming: Theory and Algorithms*. Wiley, 2006. ISBN: 9780471787761.
- Kent Beck. Una explicación de la programación extrema. Pearson Educación, 2002, 189 pages. ISBN: 8478290559.
- John Calcote. Autotools: A Practioner's Guide to GNU Autoconf, Automake, and Libtool. 1st. San Francisco, CA, USA: No Starch Press, 2010.
- Bruce Eckel. *Piensa en Java*. Pearson Educación, 2002, 906 pages. ISBN: 9788420531922.
- Brian Foy, Tom Phoenix, and Randal Schwartz. *Learning Perl.* "O'Reilly Media, Inc.", 2011, 363 pages. ISBN: 9781449303587.
- Daniel Gilly and O'Reilly & Associates. UNIX in a nutshell. O'Reilly & Associates, 1992. ISBN: 9781565920019.
- David Gunter and Jack Tackett. Utilizando Linux. Prentice Hall, 1996, 846 pages. ISBN: 9788489660557.
- Francisco Herrera, Manuel Lozano, and Jose L. Verdegay. "Tackling realcoded genetic algorithms: Operators and tools for behavioural analysis". In: Artificial intelligence review 12.4 (1998), pp. 265–319.
- Jarkko Hietaniemi, John Macdonald, and Jon Orwant. *Mastering Algorithms with Perl*. O'Reilly Media, Inc., 1999, 684 pages. ISBN: 9781565923980.
- A. Holder, ed. *Mathematical Programming Glossary*. Originally authored by Harvey J. Greenberg, 1999-2006. Accessed 1 April 2014. http:// glossary.computing.society.informs.org: INFORMS Computing Society, 2006–08.

Olaf Kirch. Linux. O'Reilly Media, 1995, 335 pages. ISBN: 9781565920873.

- Donald Ervin Knuth. *The art of computer programming*. Vol. 1,2,3,4A. Pearson Education, 1968-2011.
- Jesse Liberty. C++ para principiantes. Pearson Educación, 2000, 422 pages. ISBN: 9789701704165.
- H. A. Luther, James O. Wilkes, and Brice Carnahan. Cálculo numérico. Rueda, 1979, 639 pages. ISBN: 8472070131.
- Félix García Merayo. Programación en FORTRAN 77. Paraninfo, 1991, 399 pages. ISBN: 9788428318181.
- Arnold Neumaier. Introduction to Global Optimization. Accessed 1 April 2014. Self-Published, May 2013. URL: http://www.mat.univie.ac.at/~neum/glopt/intro.html.
- James Newkirk, Jesús García Molina, Robert C. Martin, and Martin Fowler. La programación extrema en la práctica. Pearson Educación, 2002, 200 pages. ISBN: 8478290575.
- Francisco José Baptista Pereira. "Estudo das interacções entre evolução e aprendizagem em ambientes de computação evolucionária". PhD thesis. 2002. URL: http://hdl.handle.net/10316/1744.
- Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. *A field guide to genetic programming*. (With contributions by J. R. Koza. Accessed 1 April 2014.) Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk, 2008. URL: http://www.gp-field-guide.org.uk.
- William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, 2007. ISBN: 0521880688.
- Eric S. Raymond. *The Art of UNIX Programming*. Pearson Education, 2003. ISBN: 0131429019.
- Herbert Schildt. C. Osborne MacGraw-Hill, 1989, 358 pages. ISBN: 9788476153819.
- Fco. Javier Ceballos Sierra. C/C++. RA-MA S.A. Editorial y Publicaciones, 2001, 704 pages. ISBN: 9788478974801.
- Kathy Sierra and Bert Bates. *Head First Java, 2nd Edition*. O'Reilly Media, 2005. ISBN: 0596009208.
- Nick Sofroniou, Apostolos Syropoulos, and Antonis Tsolomitis. *Digital Ty*pography Using LaTeX. Springer, 2003, 510 pages. ISBN: 9780387952178.
- James C. Spall. *Introduction to Stochastic Search and Optimization*. Wiley-Interscience, 2003, 595 pages. ISBN: 9780471330523.
- S. Srinivasan. Advanced Perl programming. A Nutshell handbook. O'Reilly, 1997. ISBN: 9781565922204.
- Johan Vromans. Perl 5 pocket reference. O'Reilly Media, 2000, 90 pages. ISBN: 9780596000325.
- Kurt Wall. *Programación en Linux con ejemplos*. Prentice-Hall, 2000, 541 pages. ISBN: 9789879460092.

- L. Wall, T. Christiansen, and J. Orwant. *Programming Perl*. O'Reilly Series. O'Reilly, 2000. ISBN: 9780596000271.
- Stephen Wright and Jorge Nocedal. *Numerical Optimization*. Springer Verlag, 2006, 664 pages. ISBN: 9780387303031.

List of tables

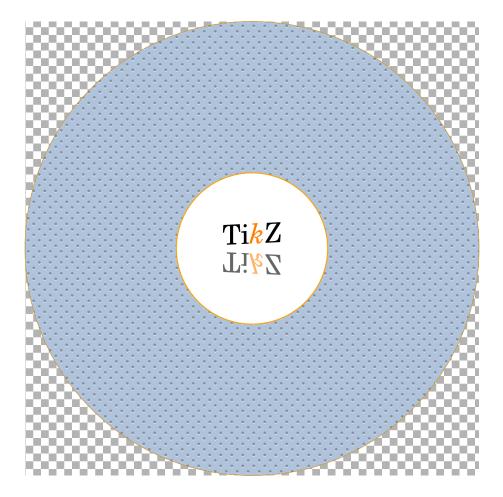
1.1	Modules with a simple configuration	15
$\begin{array}{c} 3.1\\ 3.2\end{array}$	Included potentials	$\begin{array}{c} 28\\ 35 \end{array}$
$\begin{array}{c} 4.1 \\ 4.2 \end{array}$	Extracted data	$\begin{array}{c} 40\\ 41 \end{array}$
$11.1 \\ 11.2 \\ 11.3$	Example values to fit	76 81 84
12.1	Files in the mopac-example folder after uncompress the <i>mopac.tgz</i> file.	88
13.1	Files in the shepherd-example folder	98
14.1	GA subroutines	110
$\begin{array}{c} 15.1 \\ 15.2 \end{array}$	Job file default value parameters Job file, application modules options	$\begin{array}{c} 116 \\ 117 \end{array}$
17.1 17.2	Job file default value for intermolecular module specific pa- rameters	$\begin{array}{c} 127\\ 131 \end{array}$
$18.1 \\ 18.2 \\ 18.3$	Module VGLOBALES variablesAnalyltical potential parametersOperators and functions supported in expressions	$134 \\ 142 \\ 144$
19.1 19.2	Fpu source codeFpu instruction set	$\begin{array}{c} 146 \\ 148 \end{array}$
$21.1 \\ 21.2 \\ 21.3$	Environmental variables	164 169 170
24.1	@expressions convention	185
25.1	@expressions convention	190

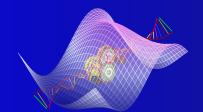
$25.2 \\ 25.3 \\ 25.4$	Environmental variables	194 195 196
26.1	Multi variable section parameters	206
27.1	Generic module files. User provided files are in yellow,	
27.2 27.3	one time files created by GAFit in lime Configuration options to generic module in job.txt file Test points and their corresponding reference values from the example.	213
A.1	Source files	227

List of figures

$1.1\\1.2$	GA main loop	$\begin{array}{c} 13\\ 16 \end{array}$
3.1	Intermolecular potential pair example	23
$\begin{array}{c} 8.1 \\ 8.2 \end{array}$	Source tree from distribution package, gafit-VERSION.tar.gz Installed tree into \$HOME	52 53
9.1 9.2 9.3	Viewing the points with Molden	56 66 67
11.1 11.2	Example polynomial plot Step 1 : GAFit is launched	76 79
11.3	Step 2 : GAFit overwrites or creates the <i>external.input</i> file.	80
11.4	Step 3 : GAFit launches the external binary	80
11.5	Step 5 : external using <i>external.input</i> evaluates the <i>ex</i> -	
	<i>ternal.values</i> and overwrites or creates the <i>external.fit</i> file	81
11.6	Step 5 : GAFit reads the external.fit file	82
11.7	Step 6 : if the fit is the best till now, GAFit overwrites or	
	creates the <i>best.txt</i> file	82
11.8	Table 11.3 polynomial plots.	85
12.1	Vinyl cyanide drawn using the coordinates of the first cal- culation (optimization of the minimum energy structure).	90
12.2	Three-centered transition state drawn using the coordinates of the last calculation.	90
14.1	Evolutionary algorithms.	103
14.2	Genes and chromosome example: 4 th potential from Table	104
14.3		105
14.4	Multiple gene mutation.	105
14.5	0	105
14.6		106
14.7		106
14.8	Single point crossover.	107

14.9	Variable lenght single point crossover.	107
14.10	Multiple point crossover.	107
	Variable lenght multiple point crossover	108
14.12	GA main loop	111
10.1	- O 1 it it in the former thin	145
19.1	uCompiler compiles the expression into fpu machine code.	145
19.2	Fpu load the machine code and process the variables to	140
10.9	obtain V value.	146
19.3	Fpu overview	147
19.4	Initial status	$149\\150$
$\begin{array}{c} 19.5 \\ 19.6 \end{array}$	apush 0, apush 1, apush 2	
	neg	$\begin{array}{c} 150 \\ 151 \end{array}$
19.7	apush 3	$151 \\ 151$
19.8	mult	191
20.1	Two body interaction example plot.	155
		100
21.1	MOPAC 2009 interface: normal operation	162
21.2	MOPAC 2009 interface: autoconfigure	163
21.3	Dihedral angles convention	171
22.1	Data flow between GAFit and shepherd	176
22.2	Shepherd algorithm: minimum time	177
22.3	Real four core CPU: minimun time vs maximum concur-	
	rent parallel processes per run	178
22.4	Virtual eight core CPU: minimum time vs maximum con-	
	current parallel processes per run	179
22.5	Real four core CPU: number of times (N) vs parallel pro-	
	cesses per run	179
22.6	Virtual eight core CPU: number of times (N) vs parallel	
	processes per run	180
22.7	Average parallel processes per run. 4 core real CPU vs 8	
	core virtual CPU (4 real)	180
22.8	Behavior in the same one core CPU writing output to a	
	NFS share vs local storage	181
25.1	CHARMM GEOMETRIES folder.	190
25.2	CHARMM interface: normal operation	191
	CHARMM: autoconfigure and job preparation	192
26.1	Mvariable: autoconfigure	204
26.2	Mvariable: normal operation	204
27.1	Generic module: autoconfigure	210
27.1	Generic module: normal operation	210
41.4		411


List of files


1	Input file example.	2
2	C source code	2
1.1	job.txt file example	14
1.2	Simple configuration job.txt file example	15
2.1	External job simple configuration example	20
2.2	External job automatic configuration example	20
2.3	Response file from the external command	20
3.1	geometries.txt	24
3.2		24
3.3	atom2type.txt	2
3.4	charges.txt	20
3.5	job.txt	28
3.6	external-intermolecular.sh	28
3.7	simple configuration job.txt	28
3.8	best.txt	29
3.9	Analytical expression	33
3.10	Many analytical expressions	34
4.1	External command to interface with MOPAC	3′
4.2	Minimal external command taking into account defaults .	38
4.3	conditions.txt	40
4.4	Simplified external command to use with shepherd	4
7.1		4′
7.2	Mopac job.txt file.	4′
7.3		48
7.4	Mvariable job.txt file.	48
7.5	Generic job.txt file.	48
9.1	coord.molden geometries file first lines.	56
9.2	energies.txt file.	56
9.3	atom2type.txt file.	5'
9.4	charges.txt file	58
9.5		58
9.6	job.txt file.	58
9.7	Uracil example output: output.txt (i)	60
9.8	Uracil example output: output.txt (ii)	60
9.9		62
9.10	Uracil example output: output.txt (iv)	63
9.11	Uracil example output: output.txt (v)	64
9.12		6
9.13		6

		~ ~
9.14	2body-type-1.dat	66
10.1	Uracil example with an analytical expression	70
10.2	Asembler bytecode produced	72
10.3	Analytical expression job	73
10.4	Analytical expression job output	73
11.1	external.values file	75
11.2	bounds.txt file	75
11.3	External example job.txt: fitting a polynomial	77
11.4	external.c	77
11.5	external.input file	83
11.6	external.fit file	83
11.7	best.txt	83
11.8	external.output	84
12.1	External example <i>job.txt</i> : fitting MOPAC coefficients	88
12.2	MOPAC coefficient limits: <i>bounds.txt</i> file	88
12.3	MOPAC 2009 coefficients to fit. <i>template.coefs</i> file	89
12.4	MOPAC 2009 task. <i>template.mop</i> file	89
12.5	Constrains: conditions.txt file	90
12.6	external program : <i>external-mopac.sh</i> file	91
12.7	external auto: response file	92
12.8	<i>mopac.input</i> file	92
12.9	<i>mopac_input.out</i> file	93
12.10	extracted.data file	94
12.11	Output: fitter evaluation	94
12.12	mopac.fit file	94
	GAFit output	95
13.1	external program: external-mopac.sh file	98
13.2	shepherd example output	99
14.1	core.c	106
15.1	job.txt. Genetic algorithm parameters and job settings for	
	an intermolecular module job	115
15.2	Reduced job.txt.	116
15.3	Bounds. Variation range of the coefficients	119
15.4	Bounds. All Coefficients=0. Structure	119
15.5	Bounds. All Coefficients<>0. Structure	119
15.6	Bounds file	120
15.7	External job settings	120
15.8	External input	121
15.9	External bulk input	121
15.10	External fit: one individual fit	121
	External bulk fit: entire generation fit	121
17.1	job.txt. Genetic algorithm parameters and job settings for	
	an intermolecular module job	127
17.2	Geometries file. Molden xyz coordinates	128
17.3	Energies file. Energies and weights	129
17.4	Energies file. Structure	129
17.5	Energies file. Structure of Energies file with auto weights	129
17.6	Atom2type. Atom to atom types mapping	130
17.7	Atom2type. Structure	130
17.8	Charges. Type to charges mapping	130

17.9	Charges. Structure	131
18.1	potentials.f	135
18.2	userpotential.f	139
18.3	job.txt. Analytical expression options	143
19.1	Job.txt to generate the File 19.2	146
19.2	Bytecode source example	148
21.1	response	160
21.2	external-mopac2009.sh	164
21.3	job.txt in mopac-example	165
21.4	Minimal external-mopac2009.sh.	165
21.5	COEFS_TEMPLATE file: template.coefs	166
21.6	MOPAC_TEMPLATE file: template.mop	166
21.7	Extractor first lines	167
21.8	extracted.data	168
21.9	fitter calculations example	171
	conditions.txt	172
	Minimal external-mopac2009.sh with the tools output active	
21.11 22.1	<i>external-mopac2009.sh</i> with shepherd	174
22.1 22.2	Shorter <i>external-mopac2009.sh</i> with shepherd	$174 \\ 174$
$\frac{22.2}{22.3}$	Short script for MOPAC 2012	$174 \\ 174$
22.3 22.4	Shepherd, main function.	174
22.4 23.1	External command with mkbounds	184
25.1 25.1	response generated by chmconfigurator	184
25.1 25.2	CHARMM_TEMPLATE: template.prm with formats	190
25.2 25.3	CHARMM_TEMPLATE: template.prm in charmm-example	$190 \\ 193$
25.3 25.4	job.txt in charmm-example	$\frac{195}{194}$
25.4 25.5	External: chmm.sh	$\frac{194}{194}$
25.5 25.6	Minimal external chmm.sh	$194 \\ 195$
25.0 25.7	template-analysis file	$195 \\ 195$
25.7 25.8	table-reference file	195 196
$\frac{25.8}{25.9}$		196 196
	geo-1.cor file	196 197
	table-reference file normalized with geom-9.cor	197
		197
	calculated-energies file example	198 199
	charmm job example:fitting.dat	$199 \\ 205$
$\begin{array}{c} 26.1 \\ 26.2 \end{array}$		
		205
	job.txt, using generic module	214
27.2	template	214
27.3	input file format	214
27.4	reference.values file	215
27.5	reference values file format	216
27.6	external-generic.sh	216
27.7	Example's user provided script: genericscript.sh	217
27.8	AA.template file	217
27.9	AA.output file	218
	extractdata.c	218
	AA.data file	219
	testgeneric.c	219
97 19	report best.txt left side	223

X This manual was typeset using the LATEX typesetting system.

GAFit User Manual

