
1 
 

 

 

 
Automated Reaction Mechanisms and Kinetics 

 

 
Emilio Martinez-Nunez 

Departamento de Química Física, Facultade de Química 
Avda. das Ciencas s/n 

15782 Santiago de Compostela, SPAIN 
emilio.nunez@usc.es 

 

  

         



2 
 

Contents 
 

1. Introduction 3 

2. How to cite the program 4 

3. Installation 5 

4. Program execution and running the tests 7 

5. Finding reaction mechanisms and solving the kinetics 8 

a) Description of the input files 9 

b) Running the dynamics in a single processor 15 

c) Running the dynamics in multiple processors 16 

d) Analyzing the dynamics results 17 

e) Running all low-level calculations using a single script 18 

f) Running the high-level calculations 19 

g) Aborting amk calculations 20 

h) Directory tree structure of the working directory 20 

i) Relevant information 21 

j) Details of the kinetics simulations 26 

6. Other capabilities 28 

a) van der Waals complexes 28 

b) Scanning dihedral angles 30 

c) Fragmentation 30 

d) Advanced options 31 

e) Biased dynamics 36 

7. Summary of all keywords and options 39 

8. References 41 

 

 

 

  



3 
 

1. Introduction 

AutoMeKin (amk) program package has been designed to discover reaction mechanisms and solve the 

kinetics in an automated fashion, using chemical dynamics simulations. The basic idea behind this program 

is to obtain transition state (TS) guess structures from trajectory simulations performed at very high energies 

or temperatures. From the obtained TS structures, minima and product fragments are determined following 

the intrinsic reaction coordinate (IRC). Then, with all the stationary points, the reaction network is 

constructed. Finally, the kinetics is solved using the Kinetic Monte Carlo (KMC) method. 

The program is interfaced with MOPAC2016, Qcore and Gaussian 09 (G09), but work is in progress to 

incorporate more electronic structure programs. 

This tutorial is thought to guide you through the various steps necessary to predict reaction mechanisms and 

kinetics of unimolecular decompositions. To facilitate the presentation, we consider, as an example, the 

decomposition of formic acid (FA). The present version of the program can also be used to study 

homogeneous catalysis, but additional refinements are needed to make the code more general and user-

friendly. This capability will be fully incorporated and described in the next released. Users are encouraged 

to read references 1-2 before using AutoMeKin package. 

The present version has been tested on CentOS 7, Red Hat Enterprise Linux and Ubuntu 16.04.3 LTS. If you 

find a bug, please report it to the main developer (emilio.nunez@usc.es). Comments and suggestions are 

also welcome.   
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2. How to cite the program 

Publications showing results obtained with AutoMeKin should include the following references:  

1) Martinez-Nunez, E. J. Comput. Chem. 2015, 36, 222–234. 

2) Martinez-Nunez, E. Phys. Chem. Chem. Phys. 2015, 17, 14912–14921. 

3) Rodriguez, A. et al. J. Comput. Chem., 2018, 39, 1922–1930. 

4) MOPAC2016, Version: 16.307, James J. P. Stewart, Stewart Computational Chemistry, web-site: 

HTTP://OpenMOPAC.net. 

If Entos Qcore code is employed for the low-level calculations, you must cite: 

1) Manby, F. R. et al., ChemRxiv.7762646 (2019). DOI: 10.26434/chemrxiv.7762646.v2 

If the vdW sampling is employed, you must cite this publication 

1) Kopec, S. et al. Int. J. Quantum Chem. 2019, 119, e26008 

If the BXDE sampling is employed, you must cite the following two publications: 

1) Hjorth Larsen, A. et al. J. Phys. Condens. Matter, 2017, 29, 273002 

2) Jara-Toro, R. A. et al. ChemSystemsChem 2020, doi: 10.1002/syst.201900024. 

If you publish the statistics of the reaction network, NetworkX python library must be cited as well: 

1) Hagberg, A. A.; Shult, D. A.; Swart, P. J. In Exploring network structure, dynamics, and function using 

NetworkX, 7th Python in Science Conference (SciPy2008), Pasadena, CA USA, Varoquaux, G.; 

Vaught, T.; Millman, J., Eds. Pasadena, CA USA, 2008; pp 11-15. 

Finally, if you use the post-processing analysis bots, the following reference must be cited: 

1) Hutchings M. et al., J. Chem. Theory Comput. 2020, 16, 1606-1617 
  

https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.23790
https://pubs.rsc.org/en/content/articlelanding/2015/CP/C5CP02175H#!divAbstract
https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.25370
http://openmopac.net/
https://chemrxiv.org/articles/entos_A_Quantum_Molecular_Simulation_Package/7762646/2
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26008
https://iopscience.iop.org/article/10.1088/1361-648X/aa680e/pdf
https://onlinelibrary.wiley.com/doi/full/10.1002/syst.201900024
https://conference.scipy.org/proceedings/scipy2008/paper_2/full_text.pdf
https://conference.scipy.org/proceedings/scipy2008/paper_2/full_text.pdf
https://conference.scipy.org/proceedings/scipy2008/paper_2/full_text.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01039
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3. Installation 

Untar and unzip the file Amk-SOURCE-2020.tar.gz: 

tar xvfz Amk-SOURCE-2020.tar.gz 

Before installing amk, be aware that the following packages are needed: 

-Bash  

-GNU bc  

-environment-modules 

-GNU Awk (gawk) 

-GNU C Compiler (gcc) 

-GNU Fortran Compiler (gfortran) 

-Gnuplot 

-GNU Parallel 

-SQLite (version >= 3) 

-Zenity 

You can install the missing ones manually, or you can use the scripts located in amk-SOURCE-2020 and 

called install-required-packages-distro.sh (where distro=ubuntu-16.4lts, centos7 or 

sl7), which will do the work for you. The ubuntu-16.4lts script installs all dependencies, but for the RHEL 

derivatives (centos7 and sl7) you have to install parallel separately, and you have two choices: 

a) install-gnu-parallel-from-source.sh. This script installs parallel latest version from 

source thanks to Ole Tange (the author). Also it can fallback to a user private installation into 

$HOME/bin if you have not administrator permisions to install it globally. 

b) install-gnu-parallel-from-epel.sh. Enables the EPEL repository and installs parallel 

from it. 

Several scripts are written in python3 and they start with something like: 

#!/usr/bin/env python3 

and you should configure your python3 installation accordingly. Additionally, the following python3 

libraries are needed: 

-ASE 

https://www.gnu.org/software/bash/
https://www.gnu.org/software/bc/
https://github.com/cea-hpc/modules
https://www.gnu.org/software/gawk/
https://gcc.gnu.org/
https://gcc.gnu.org/wiki/GFortran
http://www.gnuplot.info/
https://www.gnu.org/software/bash/manual/html_node/GNU-Parallel.html
https://www.sqlite.org/index.html
https://wiki.gnome.org/Projects/Zenity
https://wiki.fysik.dtu.dk/ase/
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-Matplotlib 

-NetworkX 

-NumPy 

-SciPy 

The program runs using two levels of theory: semiempirical (or Low-Level LL) and ab initio/DFT (or High-Level 

HL). To use Entos Qcore for the low-level calculations you must install it, which can be easily done typing: 

conda install qcore -c entos -c conde-forge 

So far, the only program interfaced with amk to perform the ab initio/DFT calculations is G09. Therefore, if 

you want to perform the HL calculations G09 should be installed and should run like in this example: 

g09<inputfile>outputfile 

Molden might also be useful to analyze the results: 

-molden 

Once the above packages are installed, go to the amk-SOURCE-2020 folder (if you are not already there) to 

configure and install the package: 

cd amk-SOURCE-2020 

./configure 

This will install amk in $HOME/amk-2020 by default. If you want to install it in a different directory, type: 

./configure --prefix=path_to_program 

Finally, complete the installation: 

make 

make install 

make clean 

The last command (make clean) is only necessary if you want to remove from the src directory the object 

files and executables created in the compilation process. 

For convenience, and once environment-modules has been installed, you can add to your .bashrc file 

the following line to use the amk module:  

module use path_to_program/modules 

where path_to_program is the path where you installed amk (e.g., $HOME/amk-2020).  

  

https://matplotlib.org/
https://networkx.github.io/
https://www.numpy.org/
https://www.scipy.org/
https://www.entos.info/
http://cheminf.cmbi.ru.nl/molden/
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4. Program execution and running the tests  

To start using any of the scripts described below, you have to load the amk/2020 module: 

module load amk/2020 

After loading the module, you may want to run tests taken from the examples folder. Run the following 

script if the program has been installed in $HOME 

run_test.sh 

or: 

run_test.sh --prefix=path_to_program 

otherwise. For instance, if you use singularity, AutoMeKin is installed in $AMK and therefore you should use: 

run_test.sh --prefix=$AMK 

The results of each test will be gathered in a different directory.  

If you want to run a subset of tests use the following: 

run_test.sh --tests=FA, FAthermo 

which will run FA and FAthermo tests only. These are the tests available in this version: assoc, 

assoc_qcore, rdiels_bias, diels_bias, FA_biasH2, FA_biasH2O, FA_bxde, FA_singletraj, FA, 

FAthermo, FA_programopt, vdW, FA_extforce, FA_qcore, FA_bxde_qcore and ttors. 

The --prefix and --tests options can be used simultaneously. 

Note that each each test can take from a few seconds to several minutes. 
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5. Finding reaction mechanisms and solving the kinetics 

The first step in our strategy for finding reaction mechanisms involves running classical trajectories, using 

MOPAC2016 or Entos Qcore. The trajectories sample the potential energy surface at the selected 

semiempirical level (the default is PM7), and AutoMeKin locates transition states by using the bond 

breaking/formation search (BBFS) algorithm described in the amk papers.1-2 Then, reactants and products 

connected by the transition states (TSs) are obtained by intrinsic reaction coordinate (IRC) calculations. 

Finally, a reaction network is constructed with all the elementary reactions predicted by the program. To 

increase the efficacy of AutoMeKin, this process may be carried out in an iterative fashion as described in 

reference 1.  Once the reaction network has been predicted at the semiempirical level, the user can calculate 

rate constants for all the elementary reactions and run Kinetic Monte Carlo (KMC) calculations to predict the 

time evolution of all the chemical species involved in the global reaction mechanism and to calculate product 

ratios.  

All the above steps can be run in an automatic fashion, using a single script as described below. However, 

AutoMeKin allows you the possibility to run the steps separately. This is important for checking purposes 

and, particularly, for the screening of structures, since you may need to adjust the screening parameters to 

your system (see below).  

In a subsequent step, the collection of TSs located at the semiempirical level are reoptimized using a higher 

level of electronic structure theory. Notice that, depending on the selected level of theory, the total number 

of reoptimized TSs may differ from that obtained with the semiempirical Hamiltonian. For each reoptimized 

TS, IRC calculations are performed to obtain the associated minima (reactant and products). The reaction 

network is then constructed for the high level of theory. As for the low-level computations, the last step 

involves the calculation of rate constants and product ratios. As detailed below, all the high-level steps can 

be run separately, employing different scripts, or in an automatic way, using a single script.  At present, all 

the high-level electronic structure calculations are performed with the G09 program. 

To follow the guidelines of this tutorial, you can try the formic acid (FA) test case that comes with the 

distribution. Make a working directory and copy files FA.dat and FA.xyz from 

path_to_program/examples to your working directory. All the scripts described below (except 

select.sh) must be run in your working directory.  

CAVEAT: use short names for the working directory and the input files. Good choices are short acronyms 

(using capital letters) like FA for formic acid. 
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a) Description of the input files 

The following are files read by amk, and therefore, they must be present in the working directory. 

 

name.xyz (FA.xyz in our example), where name refers to the name for our system; the recommendation 

is to use acronyms like FA for Formic Acid or short names. This file contains an initial input structure of our 

system in XYZ format: 

    5 
 
 C     0.000000     0.000000     0.000000 
 O     0.000000     0.000000     1.220000 
 O     1.212436     0.000000    -0.700000 
 H    -0.943102     0.000000    -0.544500 
 H     1.038843     0.000000    -1.634005 

Please provide here a stable conformer of the reactant molecule. A general recommendation is to provide 

here a structure previously optimized with the method selected with the keyword LowLevel (or eventually 

LowLevel_TSopt). If your input structure is fragmented, then, kinetics results (if available) are 

meaningless. In this case you should use biased MD to smash together the fragments and obtain a TS for 

the bimolecular process, like in the diels_alder example. 

This file is mandatory except for association and vdW samplings where two XYZ files are needed instead 

(see below). 

 

name.dat (where name can be anything, from just the name of the system to something that identifies the 

type of calculation you are carrying out; in our case FA.dat). This file contains all parameters of the 

calculation and has different sections, which are explained as follows. This file is mandatory in all cases.  

The file name.dat is organized in four sections: General, Method, Screening and Kinetics, which are 

explained in detail below. Each section contains lines with several “keyword value(s)” pairs with the 

following syntax: 

keyword value(s) 

keyword is a case-sensitive string and it must be the first field of the line. 

value(s) can be strings, integers or floats and is/are the value(s) of the keyword: 

value(s)[keyword]. 

At least one blank space must be kept between keywork and value(s). A few keywords include some 

additional lines right below the keyword line (see Biased dynamics). 
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Below you will find a detailed explanation of the keywords grouped together in the different sections. For 

each section, only the most important keywords are described. Additional keywords can be found in 

Advanced options.  

General. In this section the electronic structure details are provided. The following is an example of the 

keywords employed in this section for the FA. 

--General-- 
molecule       FA 
LowLevel       mopac pm7 
HighLevel      b3lyp/6-31G(d,p) 
HL_rxn_network complete 
IRCpoints      30 
charge         0 
mult           1 

List of “Keyword value(s)” for this section: 

molecule value  

[value is one string with no blank spaces; mandatory keyword] 

value is the name of the system and it must match the name of the XYZ file without the extension (FA in 

our example). For association and vdW sampling there is no XYZ file at the beginning and 

value[molecule] is just the name of the system. 

 

LowLevel values 

[two values: two strings; the second string accepts blank spaces; default values: mopac pm7] 

The first value is the program and the second the semiempirical method. So far, qcore and mopac are valid 

programs. For qcore only xtb method is implemented, and for mopac, any of the semiempirical methods 

of MOPAC2016 can be employed to run the MD simulations. You can use a combination of MOPAC keywords.  

If you do not employ the keyword LowLevel_TSopt, explained below in advanced options, both the low-

level TS optimizations and MD simulations are carried out using the semiempirical method specified by the 

second value. This is in general a good choice both in terms of efficacy and efficiency, and also because all 

structures will be re-optimized later using ab initio/DFT methods as specified with the keyword HighLevel. 

However, if you know that semiempirical methods do not work well for your system, and although they are 

going to be employed for the MD sampling (there is no other choice at the moment), you can still pick one 

of the ab initio/DFT methods already at this stage for the TS optimizations using the keyword 

LowLevel_TSopt explained below in advanced options. However, note that this will be much more CPU 

time consuming. 
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HighLevel value 

[value is one string; no blank spaces; mandatory keyword to run the high-level calculations] 

value indicates the level of theory employed in the high-level calculations (using gaussian). You can employ 

a dual-level approach, which includes a higher level to refine the energy, as shown in the following example: 

HighLevel ccsd(t)/6-311+G(2d,2p)//b3lyp/6-31G(d,p) 

Supported methods are HF, MP2 and DFT for geometry optimizations and HF, MP2, DFT and CCSD(T) for 

single point energy calculations.  

 

HL_rxn_network value(s)  

[one or two values: first is a string, and second (if present) is an integer; default value: complete] 

The first value can be complete or reduced. The value complete indicates that all the TSs will be 

reoptimized and in this case no second value is needed; this is the default.  

Alternatively, you may use reduced as the first value, followed by a second value (an integer) which 

indicates the maximum energy (in kcal/mol and relative to the reference starting structure) of a transition 

state to be calculated at the high level.  

 

IRCpoints value  

[value is an integer; default value: 100] 

value is the number of IRC points (in each direction) computed at the high-level with gaussian.  

 

charge value 

[value is an integer; default value: 0] 

value is the charge of the system.  

 

mult value 

[value is an integer; default value: 1] 
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value is the multiplicity of the system. Note that this keyword is only employed in the HL calculations. If 

you want to run the LL calculations with a specific multiplicity, this should be specified in the LowLevel 

keyword using any of the possibilities that MOPAC offers. 

 

Method. Here the user provides details of the method employed for sampling structures. In our FA example, 

we have the following: 

--Method-- 
sampling MD 
ntraj    10 

List of “Keyword value(s)” for this section: 

sampling value  

[value is one string with no blank spaces; default value: MD] 

value can be: MD, MD-micro, BXDE, external, ExtForce, association and vdW 

MD and MD-micro refer to the type of initial conditions used to run the MD simulations. MD-micro has not 

been implemented yet for qcore With BXDE the rare-event acceleration method named BXDE is invoked.3 

The BXDE module employs the “Atomistic Simulation Environment” (ASE) library of Python,4 which must be 

referenced whenever BXDE is employed. 

MD allows the user to include partial constraints in the trajectories, which may be useful for large systems 

(see the “advanced users” section for more details). 

external allows trajectory data to be read from the results of an external (MD) program. The trajectory 

data (in XYZ format) must be stored in a directory named coordir using one file per trajectory which should 

be called name_dynX.xyz, where name is value[molecule], and X is the number of each trajectory (X = 

1-ntraj). The keyword ntraj must be set accordingly. 

ExtForce makes all possible combinations of bond breakages/formations which are consistent with preset 

valencies of the atoms and with products lying below the maximum energy of the system. Once the 

combinations are known, forces are applied to break/form the selected bonds. This sampling does not need 

to include the number of trajectories and has not been implemented yet for qcore. 

CAVEAT: To use MD-micro the initial structure needs to be fully optimized and a frequency calculation can 

not afford imaginary frequencies. Otherwise choose MD 

 

http://openmopac.net/manual/allkeys.html
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association and vdW are employed to sample van der Waals structures, present some peculiarities and 

therefore are explained in detail in van der Waals complexes. 

MD, MD-micro, external and BXDE samplings accept the following keywords: 

 

ntraj value  

[value is an integer; default value: 1] 

value is the number of trajectories. We strongly recommend here to avoid using big numbers of 

trajectories. Instead the user should try to run different batches of trajectories as indicated below with a 

small number of trajectories each one. One trajectory is recommended for BXDE.  

 

seed value  

[value is an integer; only valid for MD and MD-micro; default value: 0] 

value is the seed of the random number generator. It can be employed to run a test trajectory. See the 

FA_singletraj.dat file in the examples. Only use this keyword for testing. 

 

Screening. Some of the initially located structures might have very low imaginary frequencies, be repeated 

or correspond to transition states of van der Waals complexes formed upon fragmentation of the reactant 

molecule. To avoid or minimize low-(imaginary)frequency structures, redundancies and van der Waals 

complexes, amk includes a screening tool, which is based on the following descriptors: energy, SPRINT 

coordinates,5 degrees of each vertex and eigenvalues of the Laplacian matrix.1 While the lowest eigenvalues 

of the Laplacian (eigL) are employed to discriminate fragmented structures, comparing the descriptors for 

any pair of structures, a mean absolute percentage error (MAPE) and a  biggest absolute percentage error 

(BAPE) are obtained.  

In this section we set a minimum value for the imaginary frequency and maximum values for MAPE, BAPE 

and eigL, as explained below: 

--Screening -- 
imagmin 200 
MAPEmax 0.008                   
BAPEmax 2.5                         
eigLmax 0.1 

List of “Keyword value(s)” for this section: 

imagmin value  
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[value is an integer; default value: 0] 

value is the minimum value for the imaginary frequency (in absolute value and cm−1) of the selected TS 

structures.  

 

MAPEmax value  

[value is a float; default value: 0] 

value is the maximum value for MAPE. 

BAPEmax value  

[value is a float; default value: 0] 

value is the maximum value for BAPE. 

If both, the MAPE and BAPE values calculated for two structures are below the values of MAPEmax and 

BAPEmax, respectively, the structures are considered equivalent, and therefore only one is kept. 

As a general advice, value[MAPEmax] and value[BAPEmax] should be small. A good starting point could 

be the values provided in the input files of the examples. Since the HL calculations (performed with G09) 

have much more stringent tests for optimization than those of MOPAC, in the screening of the HL structures, 

value[MAPEmax] and value[BAPEmax] are set to MIN(MAPEmax, 0.001) and MIN(BAPEmax, 1), 

respectively.  

 

eigLmax value  

[value is a float; default value: 0] 

value is the maximum value for an eigL to be considered 0. In Spectral Graph Theory, the number of zero 

eigLs provides the number of fragments in the system. This criterion is used to identify van der Waals 

complexes that are formed by unimolecular fragmentation.  

 

Kinetics. This part is employed to provide details for the kinetics calculations at the (experimental) 

conditions you want to simulate. This section is compulsory except for association.  

An example is given as follows. 

--Kinetics-- 
Energy  150 
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The kinetics simulations will be carried out for a canonical (fixed temperature) or microcanonical (fixed 

energy) ensemble, which have their associated keywords: 

List of “Keyword value(s)” for this section: 

Energy value  

[value is an integer; default value: 0] 

value is the energy (in kcal/mol) for which microcanonical rate coefficients will be calculated. 

 

Temperature value  

[value is an integer; default value: 298] 

value is the temperature (in K) for which thermal rate coefficients will be calculated. At present, 

temperatures below 100 K are not allowed.  

 

b) Running the dynamics in a single processor 

MD and MD-micro methods provide initial coordinates and momenta to run accelerated dynamics 

simulations. Select the number of trajectories with ntraj and remember to avoid the seed keyword if the 

number of trajectories is greater than 1. In you want to run 10 trajectories, your Method section should look 

like (remember that the amk/2020 module must be loaded): 

--Method-- 
sampling MD-micro 
ntraj    10 

The dynamics can be run either in a single processor or in parallel. To run trajectories in a single processor 

use the amk.sh script: 

amk.sh FA.dat > amk.log & 

The ouput file amk.log provides information about the calculations. In addition, a directory called 

tsdirLL_FA is created, which contains information that may be useful for checking purposes. We notice 

that the program creates a symbolic link to the FA.dat file, named amk.dat, which is used internally by 

several amk scripts. At any time, you can check the transition states that have been found using: 

tsll_view.sh 

The output of this script will be something like this: 
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  ts #     File name     w_imag      Energy     w1     w2     w3     w4 traj #   Folder 
  ----  ---------------  ------      ------   ----   ----   ----   ---- ------   ------ 
     2       ts2_batch4   1588i    -35.7105    206    438    461    727      1   batch4 
     3       ts3_batch2    458i    -78.1007    573    846   1034   1195      3   batch2 
     4       ts4_batch6   2010i    -17.6124    327    473    523   1078      1   batch6 

where the first column is the label of each TS, the second is the filename of the optimized TS structure 

(located in the tsdirLL_FA directory), the third is the imaginary frequency (in cm−1), the fourth one is the 

absolute energy of the TS (in kcal/mol for MOPAC2016 and Hartrees for qcore and gaussian) and the next 

four numbers are the four lowest vibrational frequencies (in cm−1). Finally, the last two columns are the 

trajectory number and the name of the folder where the accelerated dynamics were run.  

CAVEAT: since the dynamics employ random number seeds, the above results may differ from those 

obtained in your computer. 

As already mentioned, the MOPAC2016 output files of the optimized TSs are stored in tsdirLL_FA. You 

can use a visualization program (e.g., Molden) to analyze your results. Try, for instance: 

molden tsdirLL_FA/ts1_FA.out 

You can also watch the animation of trajectories, which are stored in the coordir folder inside the working 

directory:  

molden coordir/FA_dyn1.xyz 

We notice that the coordir folder is temporary. It is removed during the execution of a subsequent script. 

c) Running the dynamics in multiple processors  

If you have access to several processors and want to run the dynamics in parallel, you can use the script 

amk_parallel.sh, which is executed interactively (a Zenity progress bar will appear on the screen). For 

instance, to submit 50 trajectories split in 5 different tasks (10 trajectories each) you should use: 

amk_parallel.sh FA.dat 5 

This will create temporary directories batch1, batch2, batch3, batch4 and batch5 that will be 

removed when the IRCs are calculated. Each of these folders includes a coordir directory, which contains 

the individual trajectories. The TSs found in each individual task will be copied in the same folder, 

tsdirLL_FA, and, as indicated above, using the tsll_view.sh script you can monitor the progress of the 

calculations. Notice that the total number of trajectories is given by value[ntraj] multiplied by the 

number of tasks. We recommend running the amk_parallel.sh script interactively only for checking 

purposes, and particularly to carry out the screening. To run many trajectories for production, we 

recommend using the llcalcs.sh script, which is described below. 
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If the Slurm Workload Manager is installed on your computer, you can submit the jobs to Slurm using: 

sbatch [options] amk_parallel.sh FA.dat ntasks 

where ntasks is the number of tasks.  If no options are specified, sbatch employs the following default 

values: 

#SBATCH --output=amk_parallel-%j.log 

#SBATCH --time=04:00:00 

#SBATCH -c 1 --mem-per-cpu=2048 

#SBATCH -n 8 

These values can be changed when you submit the job with options.  

CAVEAT: if you use Slurm Workload Manage for the amk_parallel.sh script, you will have to wait until 

all tasks are completed before going on. 

d) Analyzing the dynamics results  

1) The amk package includes the irc.sh script, which performs intrinsic reaction coordinate 

calculations for all the located TSs. This script also allows one to perform an initial screening of the TS 

structures before running the IRC calculations: 

irc.sh screening 

This will do the screening and stop. The process involves the use of tools from Spectral Graph Theory and 

utilizes value[MAPEmax], value[BAPEmax] and value[eigLmax]. The redundant and fragmented 

structures are printed on screen as well as in the file screening.log which is located in tsdirLL_FA. 

MOPAC2016 ouput files are also gathered in tsdirLL_FA, and use filenames initiated by “REPEAT” and 

“DISCNT”, which refer to repeated and disconnected (i.e., fragmented) structures, respectively. Please 

check these structures and, if needed, change the above parameters. Should you change some of the above 

parameters (value[MAPEmax], value[BAPEmax], value[eigLmax]), you need to redo the screening 

with the new parameters:  

redo_screening.sh 

You can repeat the above process until you are happy with the screening.  

Once you are confident with the threshold values, you can submit many trajectories to carry out a thorough 

exploration of the potential energy surface. Subsequently, you can proceed with the IRC calculations.  

2) Obtaining the IRCs: 

(sbatch [options]) irc.sh  
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3) Optimizing the minima: 

(sbatch [options]) min.sh  

4) Creating the reaction network: 

rxn_network.sh 

Once you have created the reaction network, you can grow your TS list by running more trajectories (with 

amk_parallel.sh or amk.sh). Now the trajectories will start from the newly generated minima as well as 

from the main structure, specified in the name.xyz file. It is important to notice that, in general, trajectories 

run in separate batches (i.e., performed in several tasks) may be initialized from different minima and will 

have different energies. In this regard, the efficiency of the code may increase if the calculations are 

submitted using a large number for the ntasks parameter. 

Convergence in the total number of TSs can be checked doing: 

track_view.sh 

When you are happy with the obtained TSs or you achieve convergence, you can proceed with the next 

steps. 

5) Solving the kinetics using KMC with the parameters given in the kinetics section: 

kmc.sh 

6) Gathering all relevant information in folder FINAL_LL_FA: 

final.sh 

This folder will gather all the relevant information data, which are described below. 

e) Running all low-level calculations using a single script  

All the above steps can be done automatically using a single script, called llcalcs.sh. To run this script on 

a workstation with the GNU Parallel tool, type 

nohup llcalcs.sh name.dat ntasks niter runningtasks >llcalcs.log 2>&1 & 

where ntasks is the number of tasks for amk_parallel.sh, niter is the number of amk iterations, and 

runningtasks is the number of simultaneous tasks (useful if the workstation is shared by several users). 

The script can be run without the arguments (i.e., name.dat, ntasks, niter and runningtasks), and two 

pop-up windows will help you enter the arguments. 

Finally, if your computer system has the Slurm job scheduler, you can submit the calculations as follows: 
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sbatch llcalcs.sh name.dat ntasks niter  

 

CAVEAT: the use of llcalcs.sh is highly recommended once you have verified that the screening process 

works fine for your system. 

 

f) Running the high-level calculations 

Once the the low-level calculations have been completed, the user can perform the high-level computations, 

which use the G09 program. These include the optimization of TSs, IRC calculations, optimization of minima 

and products, construction of the reaction network, calculation of rate coefficients and evaluation of the 

time evolution of the chemical species involved in the global reaction mechanism. All these steps can be 

performed in an automatic fashion using the hlcalcs.sh script, employing the following sentence (for the 

FA example): 

nohup hlcalcs.sh FA.dat runningtasks >hlcalcs.log 2>&1 & 

As for the low-level calculations, the argument runningtasks is the maximum number of tasks that can 

be run simultaneously in your computer. If your computer system has the Slurm job scheduler, the 

calculations can be submitted in the following way: 

sbatch hlcalcs.sh FA.dat  

Although we recommend using the automatic procedure for the simulation of reaction mechanism and 

kinetics at the high level, it is possible to perform the calculations step by step, as described next: 

1. From your working directory (FA in the example), run: 

(sbatch [options]) TS.sh FA.dat 

In this case, the default values for a job submitted to Slurm are: 

#SBATCH --time=04:00:00 

#SBATCH -n 4 

#SBATCH --output=TS-%j.log 

#SBATCH --ntasks-per-node=2 

#SBATCH -c 12 

2. The scripts needed to build the reaction network and solve the kinetics are the same as those 

described above for the low level calculations. Namely: 

(sbatch [options]) IRC.sh 
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(sbatch [options]) MIN.sh 

RXN_NETWORK.sh 

KMC.sh 

Remember that the use of Slurm involves checking that every script has finished before proceeding with the 

next one. 

3. The product fragments are optimized using          

(sbatch [options]) PRODs.sh                                                                                                                                                                  

 

CAVEAT: Step 3 is mandatory before proceeding to step 4. Run step 3 only when you are sure the first two 

steps have been successfully completed and you do not need to add more transition states. 

4. To make a summary of the calculations in folder FINAL_HL_FA: 

FINAL.sh 

Notice that the high-level calculations also generate the directory tsdirHL_FA, which is the counterpart of 

the tsdirLL_FA folder. Finally, remember that you can use the kinetics.sh script to calculate rate 

coefficients and product branching rations for an energy or temperature different from that specified in the 

kinetics section of the name.dat file (FA.dat in our example). 

 

g) Aborting amk calculations 

If, for any reason, you want to kill all the calculations, execute the following script from the working directory: 

abort.sh 

This script kills the processes whose PID are specified in these hidden files: .parallel.pid and 

.script.pid. We notice that, if G09 jobs are killed, the read-write files (Gau-#####) generated in the 

Gaussian scratch directory are not removed. The user should do it manually.  

 

h) Directory tree structure of the working directory 

The figure below shows the main folders that are generated in the working directory (wrkdir). Folders 

batchXX (where XX = 1-tasks) are generated with amk_parallel.sh. This script is also invoked by 

llcalcs.sh, and when that happens these folders are temporary (they are removed at the end of the 

tasks). Directory coordir is only generated in those directories where amk.sh is executed. The 
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amk_parallel-logs directory contains a series of files that give information on CPU time consumption 

for the different calculation steps when they were executed with GNU Parallel. Directories tsdirLL_name 

and tsdir_HL_name are generated at runtime and employed to generate the final files and directories. For 

that reason, they should not be removed. Finally, the most important files are gathered in directories 

FINAL_LL_name and FINAL_HL_name and are described in the next section. 

 

 

i) Relevant information 

As already mentioned, the scripts final.sh and FINAL.sh collect all the relevant information in folders 

FINAL_LL_name and FINAL_HL_name, respectively (where name is value[molecule]; in our example 

name is FA). These folders contain some files as well as a subdirectory called normal_modes, which includes, 

for each structure, a file (in MOLDEN format) with which you can visualize the corresponding normal modes. 

The files included in these folders are the following. 

convergence.txt lists the number of located transition states as a function of the number of trajectories 

and iteration (Only in FINAL_LL_FA).  

Energy_profile.pdf is an energy diagram with the relevant paths. If you change the 

value[ImpPaths] in the kinetics section of the input data (see below), you will incorporate/remove some 

pathways. In our example, the energy diagram is the following: 

wrkdir

FINAL_LL_nametsdirHL_name tsdirLL_nameamk_parallel-logsFINAL_HL_name coordir batchXX

normal_modes normal_modes

amk.sh amk_parallel.sh
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frag_warnings. contains information on failed ab initio calculations of the fragments. If all calculations 

are successful, the file is absent. If some of the fragment calculations failed, the file will be located in 

FINAL_HL_FA folder. 

MINinfo contains information of the minima: 

MIN #    DE(kcal/mol) 
    1       -8.341 
    2        0.000 
    3        5.288 
    4        6.732 
    5       15.441 
    6       82.122 
    7      110.400 
    8      188.254 
Conformational isomers are listed in the same line: 
1 2 
3 4 5  

TSinfo contains information of the TSs: 

TS  #    DE(kcal/mol) 
    1       -1.624 
    2        1.868 
    3        9.644 
    4       25.135 
    5       32.821 
    6       37.608 
    7       40.956 
    8       44.037 
    9       53.173 
   10       58.156 
   11       60.015 
   12       85.659 
   13      142.228 
   14      188.765 
   15      191.650 
Conformational isomers are listed in the same line: 
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9 11 

In the above files, DE is the energy relative to that of the main structure specified in the FA.dat file 

(optimized with the semiempirical Hamiltonian). The integers are used to identify, independently, minima 

and transition states. Notice that, in this example, MIN 2 corresponds to the structure specified in FA.xyz. 

table.db with table being min, prod and ts, which refer to the minima (intermediates), product 

fragments and transition states, respectively. These are SQLite3 tables containing the geometries, energies 

and frequencies of minima, products and TSs, respectively. The different properties can be obtained using 

the select.sh script, which should be run inside the FINAL_LL_FA (or FINAL_HL_FA) folder: 

select.sh property table label 

where property can be: natom, name, energy, zpe, g, geom, freq, formula (only for prod) or all, and 

label is one of the numbers shown in RXNet (see below), which are employed to label each structure. At the 

semiempirical level, the energy values correspond to heats of formation. For high-level calculations, the 

tables collect the electronic energies. As an example, to obtain the geometry of the first transition state, you 

should use: 

select.sh geom ts 1 

RXNet contains information of the complete reaction network, that is all the elementary reactions found by 

the amk program (the file shown below and the following ones were cut and show only up to TS 31). 

TS #   DE(kcal/mol)     Reaction path information 
 ====   ============     ========================= 
    1       -1.6 PR2:  CO + H2O <---> PR2:  CO + H2O 
    2        1.9       MIN    1 <--->       MIN    2 
    3        9.6       MIN    3 <--->       MIN    4 
    4       25.1       MIN    1 <--->       MIN    1 
    5       32.8 PR2:  CO + H2O <---> PR1:  H2 + CO2 
    6       37.6       MIN    4 ----> PR2:  CO + H2O 
    7       41.0       MIN    1 ----> PR2:  CO + H2O 
    8       44.0 PR1:  H2 + CO2 <---> PR1:  H2 + CO2 
    9       53.2       MIN    1 <--->       MIN    4 
   10       58.2       MIN    2 ----> PR1:  H2 + CO2 
   11       60.0       MIN    2 <--->       MIN    5 
   12       85.7       MIN    2 <--->       MIN    6 
   13      142.2       MIN    3 <--->       MIN    6 
   14      188.8       MIN    2 <--->       MIN    8 
   15      191.7       MIN    7 <--->       MIN    8 

As can be seen, for each transition state, this file specifies the associated minima and/or product fragments 

and their corresponding identification numbers. Notice that TS, MIN and PR have independent identification 

numbers. If you use the option complete for the keyword HL_rxn_network (in the General section of 

the input data), all the TSs will be reoptimized in the high-level calculations. You may reduce significantly the 

number of TSs to be reoptimized in the HL calculations, and therefore the reaction network, if you use the 
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option reduced. If it is employed without an argument, TSs associated to PR <--> PR steps (i.e., 

bimolecular reactions) and to interconversion between optical isomers will not be reoptimized in the HL 

calculations. You may include a number as an argument of this option: 

HL_rxn_network reduced 55 

In this case, besides the above TSs, all TSs having relative energies larger than 55 kcal/mol will not be 

considered for HL reoptimizations, that is, they will not be included in the HL reaction network. We notice 

that the last argument must be an integer. 

RXNet.cg. By default (see below) the KMC calculations are “coarse-grained”, that is, conformational 

isomers form a single state, which is taken as the lowest energy isomer. Such reaction network, which also 

removes bimolecular channels, is the following:  

TS #   DE(kcal/mol)     Reaction path information 
 ====   ============     ========================= 
    6       37.6       MIN    3 ----> PR2:  CO + H2O        CONN 
    7       41.0       MIN    1 ----> PR2:  CO + H2O        CONN 
    9       53.2       MIN    1 <--->       MIN    3        CONN 
   10       58.2       MIN    1 ----> PR1:  H2 + CO2        CONN 
   11       60.0       MIN    1 <--->       MIN    3        CONN 
   12       85.7       MIN    1 <--->       MIN    6        CONN 
   13      142.2       MIN    3 <--->       MIN    6        CONN 
   14      188.8       MIN    1 <--->       MIN    8     DISCONN 
   15      191.7       MIN    7 <--->       MIN    8     DISCONN 

The last column with the flag “CONN” or “DISCONN” indicates whether the given process is connected with 

the others (CONN) or whether it is isolated (DISCONN). This flag is useful when you choose a starting 

intermediate for the KMC simulations, because that intermediate should be connected with the others. If 

you want to include all conformational isomers explicitly in the KMC simulations, you need to construct the 

reaction network by using the allstates option, as described in the next section. 

RXNet.rel is similar to RXNet.cg, but only collects the relevant paths, that is, those included in the 

Energy_profile.pdf file.  

graph_all.pdf is a graph displaying RXNet.cg reaction network. The nodes correspond to reactant, 

intermediates and products, and the widths of the edges are proportional to the number of paths connecting 

the corresponding nodes. The starting node is shown in red. 
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graph_kin.pdf is a graph displaying only those nodes actively participating in the kinetics at the chosen 

temperature 𝑇 or energy 𝐸. Here, the widths of the edges are proportional to the total (forward + backward) 

flux in the kinetics simulations. The starting node is shown in red. 
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rxn_x.txt (x = all, kin, stats) are files with information relevant for the reaction network analysis 

made with NetworkX python library.6 Each line of rxn_all.txt lists the nodes (first two columns) and the 

weight (last column), which is the number of paths connecting the two nodes. For rxn_kin.txt the weight 

is the total flux in the kinetics simulations. These two files are employed to construct graph_all.pdf and 

graph_kin.pdf, respectively. In rxn_stats.txt, some properties of the reaction network are listed, like 

the average shortest path length, the average clustering coefficient, the transitivity, etc. The user is 

encouraged to read the NetworkX documentation and ref 7. 

kineticsFvalue contains the kinetics results, namely, the final branching ratios and the population of 

every species as a function of time. In the name of the file, F is either “T” or “E” for temperature or energy, 

and “value” is the corresponding value. For instance, the kinetics results for a canonical calculation at 298 

K would be printed in a file called kineticsT298. A file called populationFvalue.pdf is also available. 

It is a plot with the population of each species as a function of time. The following figure shows an example 

of such a plot obtained for the decomposition of FA using the PM7 stationary points. 

 

 

j) Details of the kinetics simulations 

Except for vdW sampling, for the KMC simulations the different conformational isomers form a single state, 

which speeds up the calculations. If you prefer to treat each conformational isomer as a single state, you 

should run the rxn_network.sh script again (or RXN_NETWORK.sh for the high level), using the argument 
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allstates, and solve the kinetics again. The following three scripts should be run to take all low-level 

conformational isomers into account in the KMC simulations: 

rxn_network.sh allstates 

kmc.sh 

final.sh 

For vdW sampling, the allstates option is enforced when running llcalcs.sh. 

The corresponding calculation for the high-level reaction network would be: 

RXN_NETWORK.sh allstates 

KMC.sh 

PRODs.sh 

FINAL.sh 

When the calculations seek to simulate a thermal experiment (and therefore a temperature is specified in 

the kinetics section), the kinetics calculations can be rerun for a temperature different from that specified 

in the input file (using keyword Temperature). This can be easily done using the kinetics.sh script with 

the following arguments: 

kinetics.sh temp calc (allstates) 

where temp is the new temperature of the system (in K), and calc is either ll (for low-level) or hl (for 

high-level). Finally, with no other options, the conformational isomers will form a single state (as above), and 

using allstates as the last argument, the calculations will regard every conformational isomer as a 

different state. 

As explained above, the use of very tight criteria in the screening process might lead to redundant TS 

structures in the FINAL directories. In those cases, the user can remove those structures as shown in the 

following example: 

remove_ts.sh 2 4 7 

where 2, 4 and 7 are the labels of the TSs to be removed (for the LL calculations). The corresponding script 

for the HL calculations is REMOVE_TS.sh. These two scripts will create a new FINAL_XL_FA (with X = H,L) 

directory where the selected TS structures have been removed. 
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6. Other capabilities 

a) van der Waals complexes 

AutoMeKin includes an option to predict van der Waals (vdW) complexes. In principle two related sampling 

options are available: association and vdW. While association runs a number of structure 

optimizations for randomly rotated fragments, vdW is a more powerful option representing a natural 

extension of our bbfs method to study vdW complexes.8 The input files for these two options slightly differ 

from those explained previously, as detailed below. 

 

association. Here, a number of full optimizations are performed starting from random orientations of A 

and B. An example of such input file can be found in path_to_program/examples/assoc.dat. Two 

additional input files are also needed for this example, Bz.xyz and N2.xyz, which are also available in the 

same folder. The assoc.dat file contains the following data: 

--General-- 
molecule  Bz-N2 
fragmentA Bz 
fragmentB N2 
 
--Method-- 
sampling association 
rotate   com com 4.0 1.5 
Nassoc   50 
 
--Screening-- 
MAPEmax 0.0001            
BAPEmax 0.5               
eigLmax 0.05              

This type of sampling only needs three sections: General, Method and Screening. Some further keyword 

value(s) pairs are needed for this sampling: 

fragmentA value  

[value is one string with no blank spaces; mandatory keyword] 

value is the name of fragment A (Bz in our case). A file with the Cartesian coordinates Bz.xyz must be 

present in the working directory.  

 

fragmentB value  

[value is one string with no blank spaces; mandatory keyword] 
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value is the name of fragment B (N2 in our case). A file with the Cartesian coordinates N2.xyz must be 

present as well.  

 

rotate values  

[four values: first two can be strings or integers and last two are floats; default values: com com 4.0 

1.5] 

The first two values are the pivot positions of the random rotations: the center of mass (com) of fragment 

A and the center of mass of fragment B in our example (these pivots could be labels of atoms and therefore 

integers). The last two values are the distance (in Å) between both pivots and the minimum intermolecular 

distance between any two atoms of both fragments, respectively.  

 

Nassoc value  

[value is an integer; default value: 100] 

value is the total number of intermolecular structures considered in the sampling. With this sampling, you 

cannot perform kinetics. However, you still need to provide the parameters for the screening. To run the 

calculations, just type:  

amk.sh assoc.dat 

This job will submit Nassoc independent optimizations to find the structures. After the jobs finished, the 

script will automatically remove duplicates and select the best association “complex”.  

Note that you cannot use amk_parallel.sh with this option, as this script is only employed to run MD 

simulations. 

You can check the optimized structures in folder assoc_Bz_N2. The program will also select the “best” 

structure according to the minimum number of structural changes between the complex and the individual 

fragments and its energy. The structure selected will be called Bz-N2.xyz. For fragments containing metals, 

the selection is also based on the valence of the metal center. The file assoclist_sorted (in the 

assoc_Bz_N2 folder) collects a summary of the structures and their energies, as well as the MOPAC2016 

output files of each of them, which are called assocN.out, where N is a number from 1 to Nassoc. 

 

vdW. For this option, the first part is common to association, and the program runs Nassoc independent 

optimizations to get an initial structure of the complex. From that point onwards, the program performs 
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BXDE simulations to find TSs and intermediates for the system. Here is the inputfile vdW.dat that you can 

find in the examples folder: 

--General-- 
molecule  Bz-N2 
fragmentA Bz 
fragmentB N2 
 
--Method-- 
sampling vdW 
rotate   com com 4.0 1.5 
Nassoc   10 
ntraj    1 
fs       500 
 
--Screening-- 
MAPEmax 0.0001            
BAPEmax 0.5               
eigLmax 0.01              

--Kinetics— 
Energy 150 

As with other MD-based sampling methods, amk_parallel.sh can be employed here as well. 

 

b) Scanning dihedral angles 

Dihedral angles can be scanned using script tors.sh. You will need the inputfile and the XYZ file in your 

working directory and just type: 

tors.sh inputfile file 

The first argument is the name of the inputfile and the second one can be: all (default) or file. Using all, 

all the rotatable angles are scanned, while if you use file, the four indices that specify the dihedrals you 

want to scan must be present in file “dihedrals”. 

The dihedrals will be scanned and the highest point(s) along the scan(s) will be subjected to TS optimizations.  

 

c) Fragmentation 

The fragmentation patterns and breakdown curves can be modelled using the script amk_frag.sh. This 

script will iteratively fragment not only the parent molecule but also the fragments that come our of the 

primary fragmentation. The user can add more fragments and spin states to take into account. Usage: 

amk_frag.sh  

The inputfile must have an additional section called “Fragmentation”, as in this example: 

--Fragmentation-- 
minsize 4 
systems 1 
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CH3O+ 3            

 

The new keywords are explained below. 

minsize value  

[value is an integer; default value: 4] 

value is the minimum number of atoms for a fragment to be considered in secondary fragmentations. 

systems ns  

sys(1) mult(1) 

sys(2) mult(2) 

… 

sys(ns) mult(ns) 

ns is the number of additional fragments (or systems) to be considered in secondary fragmentations (default 

value: 0), besides those obtained in the fragmentation of the parent molecule. These could be fragments 

with other spin state, or fragments that are obtained through a barrierless process. This line must be 

followed by ns lines with two columns each one: the formula of each system (sys) and its multiplicity 

(mult). Note that for the formula the chemical symbols of the atoms must sorted following AutoMeKin’s 

convention: alphabetic order. 

In the example above, only fragments with number of atoms greater than or equal to 4 are further 

fragmented and an additional system has been added: CH3O+ in its triplet state. 

This workflow creates a new folder: M3Cinp containing files that can be read by program M3C to simulate 

the breakdown curves of the studied molecule. 

 

d) Advanced options 

The following are keywords that can be useful for experienced users. 

 

General 

iop value  

[value is one string with no blank spaces; no default value] 

value is a gaussian IOp string. Example: 

https://github.com/nfaguirrec/M3C
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HighLevel mpwb95/6-31+G(d,p) 

iop       iop(3/76=0560004400) 

 

LowLevel_TSopt values 

[two values: two strings; no blank spaces in each string; default values: mopac value[LowLevel]] 

First value is the program and second value is the electronic structure level employed to optimize the TSs 

at the low-level stage. This keyword is employed if you want to use gaussian (which is the only ab initio 

program interfaced with amk) for the low-level TS optimizations, as shown in the example below but take 

into account that it is very CPU-time consuming. Besides the TSs, the starting minimum in name.xyz is also 

optimized at this level of theory. 

LowLevel_TSopt gaussian hf/3-21g 

 

Method 

atoms value(s)  

[one or two values: first is a string with no blank spaces or an integer and second (if present) is a string 

with no blank spaces; only with MD; default value: all] 

The first value can be all (in which case no other values are needed) or the number of atoms initially 

excited followed by a second value (string), which is the list of atoms separated by commas (without blank 

spaces). It is analogous to modes (explained below). This is an example where atoms 1, 2 and 3 are initially 

excited. 

atoms 3 1,2,3 

 

etraj value  

[value is an integer or string with no blank spaces; only with MD-micro; no default] 

If an integer, value is the energy (in kcal/mol) of the MD-micro simulations. If value is a range as in the 

example below, the energy is randomly selected in the given energy range. 

etraj 200-300 

If etraj is not specified, the program automatically employs the following range of energies: [16.25 × (𝑠 −

1) − 46.25 × (𝑠 − 1)] kcal/mol, where s is the number of vibrational degrees of freedom of the system. The 
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values 16.25 and 46.25 have been determined from the formic acid results and making use of RRK theory. 

The program automatically adjusts the range to obtain at least 60% reactivity at the boundaries.  

 

factorflipv value  

[value is a float; only with MD and MD-micro; no default] 

Using the default options, trajectories are halted when the simulation time reaches the value[fs] keyword 

(see below) or when there an interatomic distance, 𝑟𝑖𝑗, reaches 5 times its initial value 𝑟𝑖𝑗
0, which is regarded 

as a fragmentation. Using factorflipv fragmentation can be prevented because the atomic velocities 

change their sign: 

�⃗�𝑘 = {
−�⃗�𝑘             if 𝑘 = 𝑖 or 𝑗

−0.9 × �⃗�𝑘    if 𝑘 ≠ 𝑖 or 𝑗
 

whenever the following relationship is fulfilled: 

𝑟𝑖𝑗 ≥ FP × 𝑟𝑖𝑗
0   

where FP is value[factorflipv]. We recommend this value to be in the range 3.0-5.0. 

 

fs value  

[value is an integer; default value: 500 for MD and MD-micro and 5000 for BXDE] 

value is the simulation time (in fs) in MD, MD-micro and BXDE samplings. Notice that this is the maximum 

simulation time, because when any interatomic distance reaches 5 times its initial value, the simulation 

stops. To run 2 ps trajectories the following should be employed: 

fs 2000 

 

fric value 

[value is a float; only with BXDE; default value: 0.5] 

value is the friction coefficient (in a.u.) employed in the Langevin dynamics of a BXDE simulation.  

 

modes value(s) 

[one or two values: first is a string with no blank spaces or an integer and second (if present) is a string 

with no blank spaces; only with MD-micro; default value: all] 
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The first value can be all (in which case no other values are needed) or the number of modes initially 

excited followed by a second value (string), which is the list of modes separated by commas (without blank 

spaces). It is analogous to atoms (explained above).  

 

multiple_minima value  

[value is one string: yes or no; default value: yes] 

value can be yes, in which case the exploratory simulations start from multiple minima, or no, where the 

all the MD simulations start from the input initial structure. 

 

nforces value  

[value is one integer; only with ExtForce; default value: 4] 

value is the number of different forces applied to form the bonds in ExtForce sampling. Preliminary tests 

show that the results are most sensitive to the value chosen for this force and that is why several forces are 

tested. 

 

post_proc value(s)  

[from one to three values: first value is a string (bbfs, bots or no), the second and third are integers or 

floats; default values: bbfs 20 1 for all samplings except association where the only default value 

is no] 

The first value is the post-processing algorithm employed to detect reaction events and it can be bbfs (the 

default), bots9 or no (if no algorithm is applied; this makes only sense for the purpose of testing the MD 

module). For bbfs two more values can follow: the time window (in fs) employed by bbfs and the number 

of guess structures selected per candidate. Possible choices for this last number can be 1 or 3. Example: 

post_proc bbfs 20 1 

If bots (for bond order time series) is employed (only with BXDE, vdW and external), the algorithm 

developed by Hutchings et al. is employed,9 which is based on peak finding on the first time derivative of the 

bond orders. In this case the two additional values are the cutoff frequency (in cm−1) for the low-pass filter 

used to smooth bond order time series, and the number of standard deviations considered to identify peaks 

associated with reactive events. The default values for this algorithm are: 

post_proc bots 200 2.5 
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temp value  

[value is an integer or string with no blank spaces; only with MD and BXDE; no default]  

If an integer, value is the temperature (in K) of the MD or BXDE simulations. If a range (only valid for MD), 

the temperature is randomly selected in the given range. In the absence of the temp keyword, the program 

automatically defines the following range of temperatures: [5452.04 × (𝑠 − 1)/𝑛𝑎𝑡𝑜𝑚 − 15517.34 × (𝑠 −

1)/𝑛𝑎𝑡𝑜𝑚] K, which has been optimized for formic acid. However, as for etraj, the boundaries are adjusted 

“on the fly” to obtain a minimum reactivity of 60%. For BXDE, temp has only one value (with 1000 being 

the default). 

 

thmass value  

[value is an integer; only with MD; default value: 0] 

value is the required minimum mass (in a.u.) of an atom to be initially excited.  

 

Kinetics 

imin value  

[value is an integer or one string: min0; default value: min0] 

value is the starting minimum for the KMC simulations. value can be an integer, which identifies the 

desired structure or min0, which refers to the input structure. All the minima are listed in MINinfo file and 

the user must examine RXNet.cg file to check that the minimum is indeed connected with the other ones 

(last column of each pathway indicates this fact). 

 

nmol value  

[value is an integer; default value: 1000] 

value is the number of molecules for the KMC simulations.  

 

Stepsize value 

[value is an integer; default value: 10] 

value is the number of reactions that have to take place before printing the population in the KMC runs. 
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MaxEn value  

[value is an integer; default value: 100 for thermal kinetics or 3/2 the value of Energy for 

microcanonical kinetics] 

value is the maximum allowed energy (in kcal/mol and relative to the input structure) for a TS to be included 

in the reaction network.  

 

ImpPaths value  

[value is a float; default value: 0.1] 

value is the minimum percentage of processes occurring through a particular pathway (in the KMC 

simulation) that has to be achieved in order to be considered relevant and finally included in the 

Energy_profile.pdf file. If value[ImpPaths] is 0.1, it means that pathways contributing less than 

0.1% to product formation are not included in this file. If you want to include them all use 0. Notice that 

these pathways may refer to the “coarse-grained” mechanism (default option) or to the complete 

mechanism that includes conformational isomers (obtained by using the allstates option as described 

above). 

 

e) Biased dynamics 

AutoMeKin includes several methods to bias the dynamics towards specific reaction pathways. So far, these 

are the available options (only for MD and MD-micro): 

 

1) The first option uses the AXD algorithm described in Ref 10, with which selected bond lengths are not 

allowed to stretch more than 30% with respect to their initial values. This can be useful to prevent the 

breakage of certain bonds. This option can be used invoked using the following keyword nfr pair: 

nbondsfrozen nfr 

fr_i(1) fr_j(1) 

fr_i(2) fr_j(2) 

… 

fr_i(nfr) fr_j(nfr) 

[nfr, fr_i(1,…,nfr) and fr_j(1,…,nfr) are integers; default nfr: 0] 
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where nfr is the number of constrained bonds. The line containing this keyword nfr pair must be followed 

by nfr lines, each one with two values (fr_i(1,…,nfr) and fr_j(1,…,nfr), which are integers) 

indicating the indexes (labels) of the atoms that form each constrained bond, as in the following example 

nbondsfrozen 2 
1 13 
2 8 

This would “freeze” two bond distances connecting atoms 1 and 13 and 2 and 8, respectively.  

 

2) The second algorithm bias the dynamics towards a particular reaction channel. An example of this 

option is provided in file path_to_program/examples/FA_biasH2.dat (you also need FA.xyz), which 

illustrates a way to search for H2 elimination transition states from formic acid. For this we use two sets of 

keywords to apply constant external forces to break or form bonds. For bond breakage we use the following: 

nbondsbreak nbr 

br_i(1) br_j(1) force(1) 

br_i(2) br_j(2) force(2) 

… 

br_i(nbr) br_j(nbr) force(nbr) 

[nbr, br_i(1,…,nbr) and br_j(1,…,nbr) are integers and force(1,…,nbr) are floats; default nbr: 

0] 

where nbr is the number of bonds we want to break. The line containing this keyword nbr pair must be 

followed by nbr lines, each one with three values (br_i(1,…,nbr), br_j(1,…,nbr) and 

force(1,…,nbr), of which the first two are integers and the last a float). These three numbers indicate 

the indexes (labels) of the atoms that form each bond we want to break, and the magnitude of the applied 

external force (in kcal/mol/Å), respectively.  

For bond formation we use the analogous keyword nbondsform as in this example (taken from 

FA_biasH2.dat): 

nbondsform 1 
4 5   30 
nbondsbreak 2 
3 5   80 
1 4   80 

A similar test can be performed on the same molecule to get the TS for H2O elimination. The corresponding 

input file, FA_biasH2O.dat, is also available in directory path_to_program/examples. Additionally, a 
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retro Diels-Alder reaction has also been tested (cyclohexene → ethylene+1,3-butadiene), using the input 

files rdiels_bias.dat and rdiels.xyz provided in the amk distribution.  

The above examples can be tested using the amk.sh script: 

amk.sh inputfile 
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7. Summary of all keywords and options 

sampling1 LowLevel2 General Method Screening Kinetics 

MD 

mopac 

molecule, 

LowLevel, 

HighLevel, 

HL_rxn_network, 

IRCpoints, 

charge, mult, 

iop, 

LowLevelTSopt, 

pseudo 

ntraj, seed, 

atoms, 

factorflipv, fs, 

multiple_minima, 

post_proc: bbfs, 

temp, thmass, 

nbondsfrozen, 

nbondsbreak, 

nbondsform 

imagmin, 

MAPEmax, 

BAPEmax, 

eigLmax 

Energy, 

Temperature, 

imin, nmol, 

Stepsize, 

MaxEn, 

ImpPaths 

qcore 

molecule, 

LowLevel, 

HighLevel, 

HL_rxn_network, 

IRCpoints, 

charge, mult, 

iop, 

LowLevelTSopt, 

pseudo 

ntraj, seed, fs, 

multiple_minima, 

post_proc: bbfs, 

temp 

imagmin, 

MAPEmax, 

BAPEmax, 

eigLmax 

Energy, 

Temperature, 

imin, nmol, 

Stepsize, 

MaxEn, 

ImpPaths 

MD-micro mopac 

molecule, 

LowLevel, 

HighLevel, 

HL_rxn_network, 

IRCpoints, 

charge, mult, 

iop, 

LowLevelTSopt, 

pseudo 

ntraj, seed, 

etraj, 

factorflipv, fs, 

modes, 

multiple_minima, 

post_proc: bbfs, 

nbondsfrozen, 

nbondsbreak, 

nbondsform 

imagmin, 

MAPEmax, 

BAPEmax, 

eigLmax 

Energy, 

Temperature, 

imin, nmol, 

Stepsize, 

MaxEn, 

ImpPaths 

BXDE 

mopac  

molecule, 

LowLevel, 

HighLevel, 

HL_rxn_network, 

IRCpoints, 

charge, mult, 

iop, 

LowLevelTSopt, 

pseudo 

ntraj, fs, fric, 

multiple_minima, 

post_proc: bbfs, 

bots, temp 

imagmin, 

MAPEmax, 

BAPEmax, 

eigLmax 

Energy, 

Temperature, 

imin, nmol, 

Stepsize, 

MaxEn, 

ImpPaths 

qcore 

molecule, 

LowLevel, 

HighLevel, 

HL_rxn_network, 

IRCpoints, 

charge, mult, 

iop, 

LowLevelTSopt, 

pseudo 

ntraj, fs, fric, 

multiple_minima, 

post_proc: bbfs, 

temp 

imagmin, 

MAPEmax, 

BAPEmax, 

eigLmax 

Energy, 

Temperature, 

imin, nmol, 

Stepsize, 

MaxEn, 

ImpPaths 

external mopac  

molecule, 

LowLevel, 

HighLevel, 

HL_rxn_network, 

IRCpoints, 

ntraj, post_proc: 

bbfs, bots 

imagmin, 

MAPEmax, 

BAPEmax, 

eigLmax 

Energy, 

Temperature, 

imin, nmol, 

Stepsize, 
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charge, mult, 

iop, 

LowLevelTSopt, 

pseudo 

MaxEn, 

ImpPaths 

qcore 

molecule, 

LowLevel, 

HighLevel, 

HL_rxn_network, 

IRCpoints, 

charge, mult, 

iop, 

LowLevelTSopt, 

pseudo 

ntraj, post_proc: 

bbfs 

imagmin, 

MAPEmax, 

BAPEmax, 

eigLmax 

Energy, 

Temperature, 

imin, nmol, 

Stepsize, 

MaxEn, 

ImpPaths 

ExtForce mopac 

molecule, 

LowLevel, 

HighLevel, 

HL_rxn_network, 

IRCpoints, 

charge, mult, 

iop, 

LowLevelTSopt, 

pseudo 

nforces 

imagmin, 

MAPEmax, 

BAPEmax, 

eigLmax 

Energy, 

Temperature, 

imin, nmol, 

Stepsize, 

MaxEn, 

ImpPaths 

associati

on 

mopac 

molecule, 

fragmentA, 

fragmentB, 

LowLevel 

rotate, Nassoc 

MAPEmax, 

BAPEmax, 

eigLmax 

 

qcore 

molecule, 

fragmentA, 

fragmentB, 

LowLevel 

rotate, Nassoc 

MAPEmax, 

BAPEmax, 

eigLmax 

 

vdW 

mopac 

molecule, 

fragmentA, 

fragmentB, 

LowLevel, 

HighLevel, 

IRCpoints, iop, 

LowLevelTSopt, 

pseudo 

rotate, Nassoc, 

ntraj, fs, fric, 

multiple_minima, 

post_proc: bbfs 

imagmin, 

MAPEmax, 

BAPEmax, 

eigLmax 

Energy, 

Temperature, 

imin, nmol, 

Stepsize, 

MaxEn, 

ImpPaths 

qcore 

molecule, 

fragmentA, 

fragmentB, 

LowLevel, 

HighLevel, 

IRCpoint, iop, 

LowLevelTSopt, 

pseudo 

rotate, Nassoc, 

ntraj, fs, fric, 

multiple_minima, 

post_proc: bbfs 

imagmin, 

MAPEmax, 

BAPEmax, 

eigLmax 

Energy, 

Temperature, 

imin, nmol, 

Stepsize, 

MaxEn, 

ImpPaths 

1Value of sampling keyword (in section: Method). 2First value of LowLevel keyword, i.e., program, (in section 

General). 
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