Difference between revisions of "Thermodynamics"

From AutoMeKin
Jump to navigation Jump to search
(Test)
 
(69 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
==Phase diagram of an ideal solution at fixed temperature==
 +
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are <math>p_A^*</math> and <math>p_B^*</math>, respectively.
 +
 +
The blue curve shows the vapor pressure <math>p</math> of the mixture as a function of the mole fraction of A in the liquid <math>x_A^l</math>:
 +
 +
<center>
 +
<math>p=p_B^*+(p_A^*-p_B^*)x_A^l</math>
 +
</center>
 +
 +
The red curve shows the vapor pressure <math>p</math> of the mixture as a function of the mole fraction of A in the vapor <math>x_A^v</math>:
 +
 +
<center>
 +
<math>p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}</math>
 +
</center>
 +
 +
In the example below <math>p_A^*=1</math> (a.u.) and the value of <math>p_B^*</math> can be changed moving the slider below.
 +
 +
  
 
<html lang="en">
 
<html lang="en">
 
    
 
    
 
   <head>
 
   <head>
   
+
      <div align='center'>
 +
 
 
       <meta charset="utf-8">
 
       <meta charset="utf-8">
 
       <title>slider.py example</title>
 
       <title>slider.py example</title>
Line 34: Line 53:
 
            
 
            
 
              
 
              
               <div class="bk-root" id="538a509d-e6cd-4f11-ae0b-0cc81abe235e"></div>
+
               <div class="bk-root" id="0a3d58d8-edf7-46d8-a100-536fcb083c22"></div>
 
              
 
              
 
            
 
            
Line 40: Line 59:
 
        
 
        
 
        
 
        
         <script type="application/json" id="1124">
+
         <script type="application/json" id="1615">
           {"12fcf5fa-eb2b-4212-b695-52540d1bde88":{"roots":{"references":[{"attributes":{"children":[{"id":"1044","type":"Slider"}]},"id":"1048","type":"WidgetBox"},{"attributes":{"children":[{"id":"1046","type":"WidgetBox"},{"id":"1047","type":"WidgetBox"},{"id":"1048","type":"WidgetBox"},{"id":"1049","type":"WidgetBox"}]},"id":"1050","type":"Column"},{"attributes":{"children":[{"id":"1002","subtype":"Figure","type":"Plot"},{"id":"1050","type":"Column"}]},"id":"1051","type":"Row"},{"attributes":{"plot":null,"text":""},"id":"1053","type":"Title"},{"attributes":{},"id":"1055","type":"BasicTickFormatter"},{"attributes":{},"id":"1057","type":"BasicTickFormatter"},{"attributes":{},"id":"1058","type":"Selection"},{"attributes":{},"id":"1059","type":"UnionRenderers"},{"attributes":{"line_alpha":0.1,"line_color":"#1f77b4","line_width":3,"x":{"field":"x"},"y":{"field":"y"}},"id":"1038","type":"Line"},{"attributes":{"data_source":{"id":"1001","type":"ColumnDataSource"},"glyph":{"id":"1037","type":"Line"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"1038","type":"Line"},"selection_glyph":null,"view":{"id":"1040","type":"CDSView"}},"id":"1039","type":"GlyphRenderer"},{"attributes":{"plot":{"id":"1002","subtype":"Figure","type":"Plot"},"ticker":{"id":"1012","type":"BasicTicker"}},"id":"1015","type":"Grid"},{"attributes":{"formatter":{"id":"1057","type":"BasicTickFormatter"},"plot":{"id":"1002","subtype":"Figure","type":"Plot"},"ticker":{"id":"1017","type":"BasicTicker"}},"id":"1016","type":"LinearAxis"},{"attributes":{},"id":"1017","type":"BasicTicker"},{"attributes":{"line_alpha":0.6,"line_color":"#1f77b4","line_width":3,"x":{"field":"x"},"y":{"field":"y"}},"id":"1037","type":"Line"},{"attributes":{},"id":"1012","type":"BasicTicker"},{"attributes":{"callback":{"id":"1041","type":"CustomJS"},"end":10,"start":0.1,"step":0.1,"title":"Frequency","value":1},"id":"1043","type":"Slider"},{"attributes":{"callback":{"id":"1041","type":"CustomJS"},"end":10,"start":0.1,"step":0.1,"title":"Amplitude","value":1},"id":"1042","type":"Slider"},{"attributes":{"args":{"amp":{"id":"1042","type":"Slider"},"freq":{"id":"1043","type":"Slider"},"offset":{"id":"1045","type":"Slider"},"phase":{"id":"1044","type":"Slider"},"source":{"id":"1001","type":"ColumnDataSource"}},"code":"\n    var data = source.data;\n    var A = amp.value;\n    var k = freq.value;\n    var phi = phase.value;\n    var B = offset.value;\n    var x = data['x']\n    var y = data['y']\n    for (var i = 0; i &lt; x.length; i++) {\n        y[i] = B + A*Math.sin(k*x[i]+phi);\n    }\n    source.change.emit();\n"},"id":"1041","type":"CustomJS"},{"attributes":{},"id":"1026","type":"HelpTool"},{"attributes":{"children":[{"id":"1043","type":"Slider"}]},"id":"1047","type":"WidgetBox"},{"attributes":{"dimension":1,"plot":{"id":"1002","subtype":"Figure","type":"Plot"},"ticker":{"id":"1017","type":"BasicTicker"}},"id":"1020","type":"Grid"},{"attributes":{},"id":"1025","type":"ResetTool"},{"attributes":{},"id":"1024","type":"SaveTool"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_multi":null,"active_scroll":"auto","active_tap":"auto","tools":[{"id":"1021","type":"PanTool"},{"id":"1022","type":"WheelZoomTool"},{"id":"1023","type":"BoxZoomTool"},{"id":"1024","type":"SaveTool"},{"id":"1025","type":"ResetTool"},{"id":"1026","type":"HelpTool"}]},"id":"1027","type":"Toolbar"},{"attributes":{"source":{"id":"1001","type":"ColumnDataSource"}},"id":"1040","type":"CDSView"},{"attributes":{},"id":"1021","type":"PanTool"},{"attributes":{"children":[{"id":"1042","type":"Slider"}]},"id":"1046","type":"WidgetBox"},{"attributes":{"callback":{"id":"1041","type":"CustomJS"},"end":5,"start":-5,"step":0.1,"title":"Offset","value":0},"id":"1045","type":"Slider"},{"attributes":{},"id":"1022","type":"WheelZoomTool"},{"attributes":{"children":[{"id":"1045","type":"Slider"}]},"id":"1049","type":"WidgetBox"},{"attributes":{"callback":{"id":"1041","type":"CustomJS"},"end":6.4,"start":0,"step":0.1,"title":"Phase","value":0},"id":"1044","type":"Slider"},{"attributes":{"bottom_units":"screen","fill_alpha":{"value":0.5},"fill_color":{"value":"lightgrey"},"left_units":"screen","level":"overlay","line_alpha":{"value":1.0},"line_color":{"value":"black"},"line_dash":[4,4],"line_width":{"value":2},"plot":null,"render_mode":"css","right_units":"screen","top_units":"screen"},"id":"1029","type":"BoxAnnotation"},{"attributes":{"formatter":{"id":"1055","type":"BasicTickFormatter"},"plot":{"id":"1002","subtype":"Figure","type":"Plot"},"ticker":{"id":"1012","type":"BasicTicker"}},"id":"1011","type":"LinearAxis"},{"attributes":{"overlay":{"id":"1029","type":"BoxAnnotation"}},"id":"1023","type":"BoxZoomTool"},{"attributes":{},"id":"1009","type":"LinearScale"},{"attributes":{},"id":"1007","type":"LinearScale"},{"attributes":{"callback":null,"end":10,"start":-10},"id":"1005","type":"Range1d"},{"attributes":{"callback":null},"id":"1003","type":"DataRange1d"},{"attributes":{"below":[{"id":"1011","type":"LinearAxis"}],"left":[{"id":"1016","type":"LinearAxis"}],"plot_height":400,"plot_width":400,"renderers":[{"id":"1011","type":"LinearAxis"},{"id":"1015","type":"Grid"},{"id":"1016","type":"LinearAxis"},{"id":"1020","type":"Grid"},{"id":"1029","type":"BoxAnnotation"},{"id":"1039","type":"GlyphRenderer"}],"title":{"id":"1053","type":"Title"},"toolbar":{"id":"1027","type":"Toolbar"},"x_range":{"id":"1003","type":"DataRange1d"},"x_scale":{"id":"1007","type":"LinearScale"},"y_range":{"id":"1005","type":"Range1d"},"y_scale":{"id":"1009","type":"LinearScale"}},"id":"1002","subtype":"Figure","type":"Plot"},{"attributes":{"callback":null,"data":{"x":{"__ndarray__":"AAAAAAAAAAC6V5cDY4WUP7pXlwNjhaQ/lwNjhRTIrj+6V5cDY4W0P6gtfcS7prk/lwNjhRTIvj/DbCSjtvTBP7pXlwNjhcQ/sUIKZA8Wxz+oLX3Eu6bJP6AY8CRoN8w/lwNjhRTIzj9H9+pyYKzQP8NsJKO29NE/PuJd0ww90z+6V5cDY4XUPzbN0DO5zdU/sUIKZA8W1z8tuEOUZV7YP6gtfcS7ptk/JKO29BHv2j+gGPAkaDfcPxuOKVW+f90/lwNjhRTI3j+JPM5aNQjgP0f36nJgrOA/BbIHi4tQ4T/DbCSjtvThP4EnQbvhmOI/PuJd0ww94z/8nHrrN+HjP7pXlwNjheQ/eBK0G44p5T82zdAzuc3lP/OH7UvkceY/sUIKZA8W5z9v/SZ8OrrnPy24Q5RlXug/63JgrJAC6T+oLX3Eu6bpP2bomdzmSuo/JKO29BHv6j/iXdMMPZPrP6AY8CRoN+w/XtMMPZPb7D8bjilVvn/tP9lIRm3pI+4/lwNjhRTI7j9Vvn+dP2zvP4k8zlo1CPA/6Jnc5kpa8D9H9+pyYKzwP6ZU+f51/vA/BbIHi4tQ8T9kDxYXoaLxP8NsJKO29PE/IsoyL8xG8j+BJ0G74ZjyP9+ET0f36vI/PuJd0ww98z+dP2xfIo/zP/yceus34fM/W/qId00z9D+6V5cDY4X0Pxm1pY941/Q/eBK0G44p9T/Xb8Kno3v1PzbN0DO5zfU/lSrfv84f9j/zh+1L5HH2P1Ll+9f5w/Y/sUIKZA8W9z8QoBjwJGj3P2/9Jnw6uvc/zlo1CFAM+D8tuEOUZV74P4wVUiB7sPg/63JgrJAC+T9K0G44plT5P6gtfcS7pvk/B4uLUNH4+T9m6Jnc5kr6P8VFqGj8nPo/JKO29BHv+j+DAMWAJ0H7P+Jd0ww9k/s/QbvhmFLl+z+gGPAkaDf8P/91/rB9ifw/XtMMPZPb/D+8MBvJqC39PxuOKVW+f/0/eus34dPR/T/ZSEZt6SP+PzimVPn+df4/lwNjhRTI/j/2YHERKhr/P1W+f50/bP8/tBuOKVW+/z+JPM5aNQgAQDlr1SBAMQBA6Jnc5kpaAECYyOOsVYMAQEf36nJgrABA9yXyOGvVAECmVPn+df4AQFWDAMWAJwFABbIHi4tQAUC04A5RlnkBQGQPFhehogFAEz4d3avLAUDDbCSjtvQBQHKbK2nBHQJAIsoyL8xGAkDR+Dn11m8CQIEnQbvhmAJAMFZIgezBAkDfhE9H9+oCQI+zVg0CFANAPuJd0ww9A0DuEGWZF2YDQJ0/bF8ijwNATW5zJS24A0D8nHrrN+EDQKzLgbFCCgRAW/qId00zBEALKZA9WFwEQLpXlwNjhQRAaYaeyW2uBEAZtaWPeNcEQMjjrFWDAAVAeBK0G44pBUAnQbvhmFIFQNdvwqejewVAhp7Jba6kBUA2zdAzuc0FQOX71/nD9gVAlSrfv84fBkBEWeaF2UgGQPOH7UvkcQZAo7b0Ee+aBkBS5fvX+cMGQAIUA54E7QZAsUIKZA8WB0BhcREqGj8HQBCgGPAkaAdAwM4fti+RB0Bv/SZ8OroHQB8sLkJF4wdAzlo1CFAMCEB9iTzOWjUIQC24Q5RlXghA3OZKWnCHCECMFVIge7AIQDtEWeaF2QhA63JgrJACCUCaoWdymysJQErQbjimVAlA+f51/rB9CUCoLX3Eu6YJQFhchIrGzwlAB4uLUNH4CUC3uZIW3CEKQGbomdzmSgpAFhehovFzCkDFRaho/JwKQHV0ry4HxgpAJKO29BHvCkDU0b26HBgLQIMAxYAnQQtAMi/MRjJqC0DiXdMMPZMLQJGM2tJHvAtAQbvhmFLlC0Dw6eheXQ4MQKAY8CRoNwxAT0f36nJgDED/df6wfYkMQK6kBXeIsgxAXtMMPZPbDEANAhQDngQNQLwwG8moLQ1AbF8ij7NWDUAbjilVvn8NQMu8MBvJqA1Aeus34dPRDUAqGj+n3voNQNlIRm3pIw5AiXdNM/RMDkA4plT5/nUOQOjUW78Jnw5AlwNjhRTIDkBGMmpLH/EOQPZgcREqGg9ApY941zRDD0BVvn+dP2wPQATthmNKlQ9AtBuOKVW+D0BjSpXvX+cPQIk8zlo1CBBA4dPRvbocEEA5a9UgQDEQQJAC2YPFRRBA6Jnc5kpaEEBAMeBJ0G4QQJjI46xVgxBA71/nD9uXEEBH9+pyYKwQQJ+O7tXlwBBA9yXyOGvVEEBOvfWb8OkQQKZU+f51/hBA/uv8YfsSEUBVgwDFgCcRQK0aBCgGPBFABbIHi4tQEUBdSQvuEGURQLTgDlGWeRFADHgStBuOEUBkDxYXoaIRQLymGXomtxFAEz4d3avLEUBr1SBAMeARQMNsJKO29BFAGgQoBjwJEkBymytpwR0SQMoyL8xGMhJAIsoyL8xGEkB5YTaSUVsSQNH4OfXWbxJAKZA9WFyEEkCBJ0G74ZgSQNi+RB5nrRJAMFZIgezBEkCI7UvkcdYSQN+ET0f36hJANxxTqnz/EkCPs1YNAhQTQOdKWnCHKBNAPuJd0ww9E0CWeWE2klETQO4QZZkXZhNARqho/Jx6E0CdP2xfIo8TQPXWb8KnoxNATW5zJS24E0CkBXeIsswTQPyceus34RNAVDR+Tr31E0Csy4GxQgoUQANjhRTIHhRAW/qId00zFECzkYza0kcUQAspkD1YXBRAYsCToN1wFEC6V5cDY4UUQBLvmmbomRRAaYaeyW2uFEDBHaIs88IUQBm1pY941xRAcUyp8v3rFEDI46xVgwAVQCB7sLgIFRVAeBK0G44pFUDQqbd+Ez4VQCdBu+GYUhVAf9i+RB5nFUDXb8Kno3sVQC4HxgopkBVAhp7Jba6kFUDeNc3QM7kVQDbN0DO5zRVAjWTUlj7iFUDl+9f5w/YVQD2T21xJCxZAlSrfv84fFkDsweIiVDQWQERZ5oXZSBZAnPDp6F5dFkDzh+1L5HEWQEsf8a5phhZAo7b0Ee+aFkD7Tfh0dK8WQFLl+9f5wxZAqnz/On/YFkACFAOeBO0WQFqrBgGKARdAsUIKZA8WF0AJ2g3HlCoXQGFxESoaPxdAuAgVjZ9TF0AQoBjwJGgXQGg3HFOqfBdAwM4fti+RF0AXZiMZtaUXQG/9Jnw6uhdAx5Qq37/OF0AfLC5CReMXQHbDMaXK9xdAzlo1CFAMGEAm8jhr1SAYQH2JPM5aNRhA1SBAMeBJGEAtuEOUZV4YQIVPR/fqchhA3OZKWnCHGEA0fk699ZsYQIwVUiB7sBhA5KxVgwDFGEA7RFnmhdkYQJPbXEkL7hhA63JgrJACGUBCCmQPFhcZQJqhZ3KbKxlA8jhr1SBAGUBK0G44plQZQKFncpsraRlA+f51/rB9GUBRlnlhNpIZQKgtfcS7phlAAMWAJ0G7GUBYXISKxs8ZQLDzh+1L5BlAB4uLUNH4GUBfIo+zVg0aQLe5khbcIRpAD1GWeWE2GkBm6Jnc5koaQL5/nT9sXxpAFhehovFzGkBtrqQFd4gaQMVFqGj8nBpAHd2ry4GxGkB1dK8uB8YaQMwLs5GM2hpAJKO29BHvGkB8OrpXlwMbQNTRvbocGBtAK2nBHaIsG0CDAMWAJ0EbQNuXyOOsVRtAMi/MRjJqG0CKxs+pt34bQOJd0ww9kxtAOvXWb8KnG0CRjNrSR7wbQOkj3jXN0BtAQbvhmFLlG0CZUuX71/kbQPDp6F5dDhxASIHsweIiHECgGPAkaDccQPev84ftSxxAT0f36nJgHECn3vpN+HQcQP91/rB9iRxAVg0CFAOeHECupAV3iLIcQAY8CdoNxxxAXtMMPZPbHEC1ahCgGPAcQA0CFAOeBB1AZZkXZiMZHUC8MBvJqC0dQBTIHiwuQh1AbF8ij7NWHUDE9iXyOGsdQBuOKVW+fx1AcyUtuEOUHUDLvDAbyagdQCNUNH5OvR1Aeus34dPRHUDSgjtEWeYdQCoaP6fe+h1AgbFCCmQPHkDZSEZt6SMeQDHgSdBuOB5AiXdNM/RMHkDgDlGWeWEeQDimVPn+dR5AkD1YXISKHkDo1Fu/CZ8eQD9sXyKPsx5AlwNjhRTIHkDvmmbomdweQEYyaksf8R5AnsltrqQFH0D2YHERKhofQE74dHSvLh9ApY941zRDH0D9Jnw6ulcfQFW+f50/bB9ArVWDAMWAH0AE7YZjSpUfQFyEisbPqR9AtBuOKVW+H0ALs5GM2tIfQGNKle9f5x9Au+GYUuX7H0CJPM5aNQggQDUIUAx4EiBA4dPRvbocIECNn1Nv/SYgQDlr1SBAMSBA5TZX0oI7IECQAtmDxUUgQDzOWjUIUCBA6Jnc5kpaIECUZV6YjWQgQEAx4EnQbiBA7Pxh+xJ5IECYyOOsVYMgQESUZV6YjSBA71/nD9uXIECbK2nBHaIgQEf36nJgrCBA88JsJKO2IECfju7V5cAgQEtacIcoyyBA9yXyOGvVIECi8XPqrd8gQE699Zvw6SBA+oh3TTP0IECmVPn+df4gQFIge7C4CCFA/uv8YfsSIUCqt34TPh0hQFWDAMWAJyFAAU+CdsMxIUCtGgQoBjwhQFnmhdlIRiFABbIHi4tQIUCxfYk8zlohQF1JC+4QZSFACRWNn1NvIUC04A5RlnkhQGCskALZgyFADHgStBuOIUC4Q5RlXpghQGQPFhehoiFAENuXyOOsIUC8phl6JrchQGdymytpwSFAEz4d3avLIUC/CZ+O7tUhQGvVIEAx4CFAF6Gi8XPqIUDDbCSjtvQhQG84plT5/iFAGgQoBjwJIkDGz6m3fhMiQHKbK2nBHSJAHmetGgQoIkDKMi/MRjIiQHb+sH2JPCJAIsoyL8xGIkDOlbTgDlEiQHlhNpJRWyJAJS24Q5RlIkDR+Dn11m8iQH3Eu6YZeiJAKZA9WFyEIkDVW78Jn44iQIEnQbvhmCJALPPCbCSjIkDYvkQeZ60iQISKxs+ptyJAMFZIgezBIkDcIcoyL8wiQIjtS+Rx1iJANLnNlbTgIkDfhE9H9+oiQItQ0fg59SJANxxTqnz/IkDj59RbvwkjQI+zVg0CFCNAO3/YvkQeI0DnSlpwhygjQJMW3CHKMiNAPuJd0ww9I0Dqrd+ET0cjQJZ5YTaSUSNAQkXj59RbI0DuEGWZF2YjQJrc5kpacCNARqho/Jx6I0Dxc+qt34QjQJ0/bF8ijyNASQvuEGWZI0D11m/Cp6MjQKGi8XPqrSNATW5zJS24I0D5OfXWb8IjQKQFd4iyzCNAUNH4OfXWI0D8nHrrN+EjQKho/Jx66yNAVDR+Tr31I0AAAAAAAAAkQA==","dtype":"float64","shape":[500]},"y":{"__ndarray__":"AAAAAAAAAAAvNZL/CIWUP7tEEPn6g6Q/O0UWgVXDrj9sO08yw3+0P/d31CHAm7k/wg2SFhu1vj+ruqTupuXBP64x6UrpbsQ/gxtv4BH2xj+wudgm3nrJP0vt6NML/cs/buFT4lh8zj+iT0TMQXzQP3VsuUeluNE/sByaXDbz0j9PROqz1CvUP8758ylgYtU/x2SV0biW1j8VAIn3vsjXPyrppyVT+Ng/zOYlJlYl2j8f0sYGqU/bP34NDRwtd9w/erVgBMSb3T/kOC+rT73eP9gFA0yy298/Hn3JOmd74D+ho2SGQwfhPx284KdfkeE/96ZebK0Z4j9oEIjQHqDiP30+AAKmJOM/K9bPYDWn4z8DcsuAvyfkP7Dl9Co3puQ/7AnXXo8i5T8g7dtTu5zlP5hFnXquFOY/nAIvflyK5j+C2mNFuf3mP1G0C/S4buc/Qcwr7E/d5z/6cjDPcknoPylIGH8Ws+g/ptGYHzAa6T8OUTwXtX7pP366eBCb4Ok/ta+/+tc/6j+oY4cLYpzqP1RLTL8v9uo/SIGL2jdN6z8nwrVqcaHrPznpGsfT8us/ttTNkVZB7D+DmoC48YzsP5f2WHWd1ew/UN28T1Ib7T+jHBcdCV7tP+f3kwG7ne0/76rVcGHa7T/MwaAu9hPuP4YzgE9zSu4//y5hOdN97j/fiSakEK7uP3HCM5om2+4/KYbveBAF7z9erz3xySvvP7Kt8AdPT+8/g00yFpxv7z+X0+PJrYzvPypj9SWBpu8/W6W0ghO97z/kqRKOYtDvP/X54Ets4O8/39YFFi/t7z80n6ecqfbvP+tVT+ba/O8/+EcCUML/7z+yzVKNX//vP1AmaKiy++8/sWz9Abz07z+JpVdRfOrvP/XnMqT03O8/aaKmXibM7z/X/gA7E7jvP8VpmUm9oO8/DUGa8CaG7z/Ur8HrUmjvPzu+GUxER+8/J5ynd/4i7z96LxIphfvuP93uP2/c0O4/QxPsrAij7j8bKzOYDnLuPwMbFzrzPe4/zJj67bsG7j9sLhRhbsztP0rT2JEQj+0/YCtez6hO7T9PfLS4PQvtP4FpODzWxOw/TInclnl77D/C5WpTLy/sP+N8vkn/3+s/b9T0nfGN6z/Etpe/DjnrP5Uuv2hf4eo/h9grneyG6j8solmpvynqP74OiyHiyek/5xrN4F1n6T9M2fMHPQLpP8Xij/yJmug/YbXcZ08w6D+pHqg1mMPnP6HNMpNvVOc/byoK7uDi5j+Xkdvy927mP+oRQYzA+OU/uMyH4UaA5T9aGHBVlwXlP0SG54S+iOQ/vu28RckJ5D/XnU6lxIjjP9rYMue9BeM/+bzag8KA4j+/vS8n4PnhPwvTK68kceE/P4JsKp7m4D9v58DWWlrgP/vIZT/SmN8/HDkXOq953j9ExqYialfdP+SLmtAgMtw/0bPcavEJ2z9L5qFk+t7ZP5niR3pasdg/tJEsrjCB1z8R531FnE7WP5biAsW8GdU//wje7bHi0z/Kp0m6m6nSPyo6TlqabtE/aUZzMM4x0D96E9acr+bNP5OWcuOvZss/ulqrAN/jyD8JrZMKf17GP/6Ul1rS1sM/35qphhtNwT+EqNS0OoO9P9HYlKA1abg/GrlPFa5Msz8EI5wzVVysPyLiIdJjHKI/zvS9I1dqjz90Y9qhN0Bzv5EqvbjIVJm/mUj9bHTrpr/MuO+iFJWwvyWBaKK6srW/EB2tkCXOur+1ajcEz+a/v6pJBG4YfsK/jJK5puIGxb+QJe54g43Hv99eOWq4Ecq/A//sPz+TzL9mPOQF1hHPv7XJpYqdxtC/RVKwjZYC0r+othSQtTzTvwAWkUbadNS/cJ/wmeSq1b9TJ1iqtN7Wvz0MjdIqENi/ehQ2qyc/2b917xUOjGvavwEFPxk5ldu/TT9AMhC83L/nekoJ89/dv/hKTpzDAN+/e98IHTIP4L9w7J7CW5zgvwSysTvQJ+G/EG77MYGx4b+Ai6F9YDniv1MxqSZgv+K/zuVmZnJD47+6H+moicXjv8ugXY6YReS/AHRx7JHD5L9BbKvPaD/lv0P/wHwQueW/xlnlcXww5r/aihJooKXmvwukTFRwGOe/lK3eaOCI57+qTZEW5fbnvz0D2w1zYui/t9QJQH/L6L8kVGbg/jHpv/LaT2Xnlem/BOBRiS736b9tSzJMylXqv1Os+POwseq/qjXuDdkK67+tZ5ZvOWHrvzFMoDfJtOu/dC3Qzn8F7L8Br+HoVFPsv60xYoVAnuy//WuD8Drm7L+EIebDPCvtv1fkXOc+be2/YMymkTqs7b+tESJJKejtvxh3duQEIe6/AXQ3i8dW7r8gDH62a4nuv/hFejHsuO6/sDD8GUTl7r9ma/Tgbg7vv6Ug7EpoNO+/wWl0cCxX77+qDo2+t3bvv32XAvcGk++/W6bDMBes77+akC3Y5cHvv4svUK9w1O+/veEozrXj77/OttSis+/vv4jAufFo+O+/G4Wn1dT9778Sj+6/9v/vv50Yb3jO/u+/r9CeHVz6779VuYUkoPLvv5sfslib5++/N64j3E7Z778onS0nvMfvv1ABUAjlsu+/FEAIpMua77/Lq5h0cn/vv+NOx0ncYO+/YuyTSAw/779jPeXqBRrvv/9zLf/M8e6/Og0GqGXG7r8C/MJb1Jfuv6I4/eMdZu6/mMAUXUcx7r/pE6o1Vvntv6E9Dy5Qvu2/R3awVzuA7b/Gb3QUHj/tv1hbFBb/+uy/i7prXeWz7L+LDcA52Gnsv8pxAEjfHOy/kET9cQLN67873pftSXrrv3F76ju+JOu/vmpoKGjM6r9ClfbHUHHqv5Z6/HeBE+q/Jbht3QOz6b+7Nczj4U/pv/AQI7wl6ui/fWL629mB6L84+UP8CBfov6cmQRi+qee/fLphbAQ6579vShx158fmvzzlv+1yU+a/Y08/z7Lc5b/E6fVOs2PlvzliZt2A6OS/lk/zJChr5L882pEItuvjv8uTdqI3auO/+aC8Qrrm4r+RWAduS2HivxB8Htz42eG/DC6FdtBQ4b8HzAtX4MXgv8DQXMY2OeC/KssJdcRV37+bkuyq4jXev7tnD8flEt2/X7zds+vs27+MrG2qEsTav8qQZC95mNm/TcvTDz5q2L9kIw5egDnXv90Bdm5fBta/VuNE1PrQ1L8YVExecpnTv+XLsBPmX9K/Ab+eMHYk0b9NePRFhs7Pv9vaEg7bUM2/6qg0SCzQyr8uNUjSu0zIv12ZyNLLxsW/BLnwsZ4+w789gecSd7TAv641zJkvUby/p4GxyIc2t78U5PUHfRmyvyXHvtcr9am/lXm05mRpn784cOLNbsqFv0OMsrIpQIM/rh09xmMknj8R0OuyzFKpP08y9YNmyLE/3pU6qZLltj//MJExZAC8P0YPnGEqjMA/ozIZKG8Wwz93jQeSvZ7FP4Uq1PjSJMg/2rxr8Gyoyj9PxQ5OSSnNP37/Hi8mp88/yrLy/+AQ0T9nCyjBbUzSP0a4U+oYhtM/1NMcPMK91D9bGv6rSfPVP8oxkWePJtc/9ivU13NX2D9F7mik14XZP3Yozrabsdo/RYaRPaHa2z8Dx3qvyQDdP9For872I94/9ZPOqwpE3z+XeoLUczDgP44ajD44veA/0N40G0RI4T/FPvgeidHhP9qtFC35WOI/oAb/WIbe4j/gANHnImLjP0ONslHB4+M/AfE9Q1Rj5D+Ffd6ezuDkP32/KX4jXOU/OQIzM0bV5T8FBNlJKkzmP6W5DYnDwOY/Av8X9AUz5z/YE8/L5aLnP0bEz49XEOg/Mx2r/0976D+gjQ4cxOPoPyVW5SepSek/PClzqfSs6T/+3mdrnA3qPzAg7H2Wa+o/vOymN9nG6j8E47s2Wx/rP8YtwmETdes/BP+z6PjH6z+nf9ZFAxjsP74bmj4qZew/eRRz5GWv7D9iQaqVrvbsP6zrJf78Ou0/qa4qGEp87T/SSRQtj7rtPxNRBtbF9e0/iKmU/Oct7j8mwWPb72LuP8pwwP7XlO4/QXkvRZvD7j9jjPTfNO/uP3TUkFOgF+8/quw4eNk87z/lPkJ63F7vPza7h9qlfe8/7d7FbjKZ7z+nAe5hf7HvP+DfcDSKxu8/VVuAvFDY7z9uakgm0ebvP+EwH/QJ8u8/kTys/vn57z+v4gZ1oP7vP+u5y9z8/+8/jy8pEg/+7z8yNuNH1/jvP6MNTgdW8O8/mCRAMIzk7z+RFfv4etXvP0zBC+4jw+8/Fooh8oit7z8qtNw9rJTvPy/wk1+QeO8/4RUROzhZ7z/VFUUJpzbvPw0q81fgEO8/Qk5TCejn7j9WCaxTwrvuP3mS48BzjO4/mF0ILgFa7j8IG9HKbyTuP9w3FBnF6+0/0uw27Aaw7T+76pNoO3HtPy602QJpL+0/JbVgf5bq7D/QKXnxyqLsP1bnsLoNWOw/IxkRimYK7D8hB1Rb3bnrP3n5EnZ6Zus/g0/sbEYQ6z9R4KEcSrfqP9C7L6uOW+o/B2Xbhh396T97nTtlAJzpP8TbOEJBOOk/Z4cGX+rR6D/2FBVBBmnoP1ge/bCf/ec/TJNjucGP5z8dINeldx/nP3DnpgHNrOY/cq6yls035j9ZmjRshcDlPyefhMUAR+U/P8DVIEzL5D8HRO01dE3kPxb80/SFzeM/FMWBhI5L4z9VYINBm8fiP37Lmry5QeI/GTpaufe54T/F1bksYzDhP2hqqDsKpeA/viOXOfsX4D/KBgFOiRLfPyJq1V/q8d0/6dHKVDfO3D+FtwYqjqfbP+BonyoNfto/zMB+7NJR2T91LT1N/iLYP2hZ9W6u8dY/asgQtQK+1T8Gvg3BGojUPyHCPm8WUNM/QBmE0xUW0j+qhv81OdrQP9RehR9COc8/aenwDty6zD/hPhPcgTnKP5FlenZ1tcc/xoCpFPkuxT9zLUotT6bCP4lGV3C6G8A/B4qDgPseuz9W3SBWuAO2P2YY9sYx5rA/wlwH6NyNpz/Qyw6w1JmaP3VR3tjNVHg/ZWY8thvgjL+jM5KY6Xmhv5zEDlAAuqu/iq23pp77sr8v/pGKSRi4v/9IK0l6Mr2/HDKlTNUkwb+TIVtAqq7Dv0IJ/jB5Nsa/UeUVhf+7yL9p6ETf+j7LvyYcGiUpv82/SZHuQiQe0L8XManAC1vRv/l1O3cqltK/0rQZAWDP078csgIrjAbVvwoaT/eOO9a/z3Q7oUhu17/KQiygmZ7Yv9/o66pizNm/ZBjiuoT32r/TXUQP4R/cv0CCPzBZRd2//mwZ8s5n3r9TMUt4JIffv3F8SRyeUeC/JLz+fvzd4L9ST/P1nmjhvw==","dtype":"float64","shape":[500]}},"selected":{"id":"1058","type":"Selection"},"selection_policy":{"id":"1059","type":"UnionRenderers"}},"id":"1001","type":"ColumnDataSource"}],"root_ids":["1051"]},"title":"Bokeh Application","version":"1.0.2"}}
+
           {"5e99dd87-ef63-471c-ac32-90aba1a5be5a":{"roots":{"references":[{"attributes":{"dimension":1,"plot":{"id":"1494","subtype":"Figure","type":"Plot"},"ticker":{"id":"1509","type":"BasicTicker"}},"id":"1512","type":"Grid"},{"attributes":{"callback":{"id":"1538","type":"CustomJS"},"end":5,"start":0.1,"step":0.1,"title":"pB* (a.u.) =","value":5},"id":"1539","type":"Slider"},{"attributes":{"plot":{"id":"1494","subtype":"Figure","type":"Plot"},"ticker":{"id":"1504","type":"BasicTicker"}},"id":"1507","type":"Grid"},{"attributes":{},"id":"1546","type":"BasicTickFormatter"},{"attributes":{"plot":null,"text":""},"id":"1544","type":"Title"},{"attributes":{"children":[{"id":"1494","subtype":"Figure","type":"Plot"},{"id":"1541","type":"Column"}]},"id":"1542","type":"Row"},{"attributes":{"children":[{"id":"1539","type":"Slider"}]},"id":"1540","type":"WidgetBox"},{"attributes":{"children":[{"id":"1540","type":"WidgetBox"}]},"id":"1541","type":"Column"},{"attributes":{},"id":"1548","type":"BasicTickFormatter"},{"attributes":{},"id":"1549","type":"Selection"},{"attributes":{"axis_label":"Mole fraction of A","formatter":{"id":"1546","type":"BasicTickFormatter"},"plot":{"id":"1494","subtype":"Figure","type":"Plot"},"ticker":{"id":"1504","type":"BasicTicker"}},"id":"1503","type":"LinearAxis"},{"attributes":{},"id":"1501","type":"LinearScale"},{"attributes":{"bottom_units":"screen","fill_alpha":{"value":0.5},"fill_color":{"value":"lightgrey"},"left_units":"screen","level":"overlay","line_alpha":{"value":1.0},"line_color":{"value":"black"},"line_dash":[4,4],"line_width":{"value":2},"plot":null,"render_mode":"css","right_units":"screen","top_units":"screen"},"id":"1521","type":"BoxAnnotation"},{"attributes":{},"id":"1504","type":"BasicTicker"},{"attributes":{"axis_label":"Vapor pressure (a.u.)","formatter":{"id":"1548","type":"BasicTickFormatter"},"plot":{"id":"1494","subtype":"Figure","type":"Plot"},"ticker":{"id":"1509","type":"BasicTicker"}},"id":"1508","type":"LinearAxis"},{"attributes":{},"id":"1509","type":"BasicTicker"},{"attributes":{"line_alpha":0.6,"line_color":"blue","line_width":3,"x":{"field":"x"},"y":{"field":"y0"}},"id":"1529","type":"Line"},{"attributes":{"source":{"id":"1493","type":"ColumnDataSource"}},"id":"1532","type":"CDSView"},{"attributes":{"callback":null,"data":{"x":{"__ndarray__":"AAAAAAAAAABbv1Kg1q+EP1u/UqDWr5Q/CB988MEHnz9bv1Kg1q+kPzJvZ0jM26k/CB988MEHrz9wZ0jM2xmyP1u/UqDWr7Q/RhdddNFFtz8yb2dIzNu5Px3HcRzHcbw/CB988MEHvz96O0Ni3s7AP3BnSMzbGcI/ZZNNNtlkwz9bv1Kg1q/EP1HrVwrU+sU/RhdddNFFxz88Q2LezpDIPzJvZ0jM28k/J5tssskmyz8dx3Ecx3HMPxPzdobEvM0/CB988MEHzz9/pUCtXynQP3o7Q2LeztA/ddFFF1100T9wZ0jM2xnSP2r9SoFav9I/ZZNNNtlk0z9gKVDrVwrUP1u/UqDWr9Q/VlVVVVVV1T9R61cK1PrVP0yBWr9SoNY/RhdddNFF1z9BrV8pUOvXPzxDYt7OkNg/N9lkk0022T8yb2dIzNvZPy0Fav1Kgdo/J5tssskm2z8iMW9nSMzbPx3HcRzHcdw/GF100UUX3T8T83aGxLzdPw6JeTtDYt4/CB988MEH3z8DtX6lQK3fP3+lQK1fKeA/ffDBBx984D96O0Ni3s7gP3eGxLydIeE/ddFFF1104T9yHMdxHMfhP3BnSMzbGeI/bbLJJpts4j9q/UqBWr/iP2hIzNsZEuM/ZZNNNtlk4z9j3s6QmLfjP2ApUOtXCuQ/XnTRRRdd5D9bv1Kg1q/kP1gK1PqVAuU/VlVVVVVV5T9ToNavFKjlP1HrVwrU+uU/TjbZZJNN5j9MgVq/UqDmP0nM2xkS8+Y/RhdddNFF5z9EYt7OkJjnP0GtXylQ6+c/P/jggw8+6D88Q2LezpDoPzmO4ziO4+g/N9lkk0026T80JObtDInpPzJvZ0jM2+k/L7rooosu6j8tBWr9SoHqPypQ61cK1Oo/J5tssskm6z8l5u0MiXnrPyIxb2dIzOs/IHzwwQcf7D8dx3Ecx3HsPxsS83aGxOw/GF100UUX7T8VqPUrBWrtPxPzdobEvO0/ED744IMP7j8OiXk7Q2LuPwvU+pUCte4/CB988MEH7z8Gav1KgVrvPwO1fqVAre8/AAAAAAAA8D8=","dtype":"float64","shape":[100]},"y0":{"__ndarray__":"AAAAAAAAFECBWr9SoNYTQAO1fqVArRNAhA8++OCDE0AFav1KgVoTQIbEvJ0hMRNACB988MEHE0CJeTtDYt4SQArU+pUCtRJAjC666KKLEkANiXk7Q2ISQI7jOI7jOBJAED744IMPEkCRmLczJOYRQBLzdobEvBFAk0022WSTEUAVqPUrBWoRQJYCtX6lQBFAF1100UUXEUCYtzMk5u0QQBoS83aGxBBAm2yyySabEEAcx3Ecx3EQQJ4hMW9nSBBAH3zwwQcfEEBArV8pUOsPQENi3s6QmA9ARhdddNFFD0BIzNsZEvMOQEuBWr9SoA5ATjbZZJNNDkBQ61cK1PoNQFKg1q8UqA1AVVVVVVVVDUBYCtT6lQINQFq/UqDWrwxAXXTRRRddDEBgKVDrVwoMQGLezpCYtwtAZJNNNtlkC0BnSMzbGRILQGr9SoFavwpAbLLJJptsCkBvZ0jM2xkKQHIcx3EcxwlAdNFFF110CUB2hsS8nSEJQHk7Q2LezghAfPDBBx98CEB+pUCtXykIQIFav1Kg1gdAgw8++OCDB0CGxLydITEHQIl5O0Ni3gZAiy666KKLBkCO4ziO4zgGQJCYtzMk5gVAk0022WSTBUCWArV+pUAFQJi3MyTm7QRAm2yyySabBECdITFvZ0gEQKDWrxSo9QNAoosuuuiiA0ClQK1fKVADQKj1KwVq/QJAqqqqqqqqAkCtXylQ61cCQK8UqPUrBQJAsskmm2yyAUC0fqVArV8BQLczJObtDAFAuuiiiy66AEC8nSExb2cAQL9SoNavFABAgg8++OCD/z+IeTtDYt7+P47jOI7jOP4/kk022WST/T+YtzMk5u38P5whMW9nSPw/oosuuuii+z+m9SsFav36P6xfKVDrV/o/sskmm2yy+T+2MyTm7Qz5P7ydITFvZ/g/wAcffPDB9z/GcRzHcRz3P8rbGRLzdvY/0EUXXXTR9T/WrxSo9Sv1P9oZEvN2hvQ/4IMPPvjg8z/k7QyJeTvzP+pXCtT6lfI/8MEHH3zw8T/0KwVq/UrxP/qVArV+pfA/AAAAAAAA8D8=","dtype":"float64","shape":[100]},"y1":{"__ndarray__":"AAAAAAAAFEBmEZ9AKjkTQLGiND4ygRJAaN1ginzWEUDUm970pjcRQO1+o+x+oxBAGZyPwfkYEEDL5XK5XC4PQDzLiD6gOg5AVVVVVVVVDUC8DujGPH0MQBQ7sRM7sQtAvJyCl1PwCkCS5khzpDkKQIwxxhhjjAlAqQnGW9nnCECmct3xYksIQO/8LU5rtgdAh/IaymsoB0AO6qAO6qAGQGx8M7R2HwZAT3HJEKyjBUAtLS0tLS0FQKq/z9ukuwRA7MRO7MROBEB7YKN3ReYDQPuLk0HkgQNAspCFLGQhA0AJKEW9jMQCQJuypqwpawJAUaFChQoVAkAQTsRLAsIBQPFOfjDncQFASZIkSZIkAUCjvrNR39kAQBmYrnOskQBAvoT2EtpLAECFgJyfSggAQJMdOdjEjf8/Dg8PDw8P/z9E6Vw2Q5T+P9rg35YzHf4/2tSmNrWp/T+SS1Clnzn9P83MzMzMzPw/Y4wxxhhj/D9ndzSyYfz7Pyow9pSHmPs/y5PINGw3+z9nOKn78tj6Px4XL9sAffo//WyxMnwj+j+m6HO3TMz5P7ORqV5bd/k/SZIkSZIk+T/LPY2w3NP4PzRq/tUmhfg/hoPo8V04+D/BtR8lcO33P9kt/GpMpPc/Kc51jOJc9z98zyYUIxf3P6KsIkP/0vY/BmmQBmmQ9j/qyfjtUk/2Pzp5OiKwD/Y/0UUXXXTR9T+p0k7hk5T1P0cIPHMDWfU/HoXrUbge9T9eHKIwqOX0PyEyyzDJrfQ/HnFH3BF39D+P8xQgeUH0PxqISkf2DPQ/lz1g9oDZ8z9Y178mEafzP1o3mCKfdfM/ti7vgCNF8z91fu0hlxXzP0UlYSvz5vI/CmJyBTG58j/7F4hXSozyP0yAWAU5YPI/ck8jLPc08j8dqRIgfwryP/RuwGnL4PE/OKPdw9a38T+QwfkYnI/xP4AWaIEWaPE/QUFBQUFB8T+uK3/GFxvxP2XiMaeV9fA/WNLLn7bQ8D/HCoSRdqzwP0A6zYDRiPA/4jLgk8Nl8D951lgRSUPwP9ld5F5eIfA/AAAAAAAA8D8=","dtype":"float64","shape":[100]}},"selected":{"id":"1549","type":"Selection"},"selection_policy":{"id":"1550","type":"UnionRenderers"}},"id":"1493","type":"ColumnDataSource"},{"attributes":{"below":[{"id":"1503","type":"LinearAxis"}],"left":[{"id":"1508","type":"LinearAxis"}],"plot_height":400,"plot_width":400,"renderers":[{"id":"1503","type":"LinearAxis"},{"id":"1507","type":"Grid"},{"id":"1508","type":"LinearAxis"},{"id":"1512","type":"Grid"},{"id":"1521","type":"BoxAnnotation"},{"id":"1531","type":"GlyphRenderer"},{"id":"1536","type":"GlyphRenderer"}],"title":{"id":"1544","type":"Title"},"toolbar":{"id":"1519","type":"Toolbar"},"x_range":{"id":"1495","type":"Range1d"},"x_scale":{"id":"1499","type":"LinearScale"},"y_range":{"id":"1497","type":"Range1d"},"y_scale":{"id":"1501","type":"LinearScale"}},"id":"1494","subtype":"Figure","type":"Plot"},{"attributes":{"callback":null},"id":"1495","type":"Range1d"},{"attributes":{"callback":null,"end":5},"id":"1497","type":"Range1d"},{"attributes":{},"id":"1499","type":"LinearScale"},{"attributes":{},"id":"1550","type":"UnionRenderers"},{"attributes":{"source":{"id":"1493","type":"ColumnDataSource"}},"id":"1537","type":"CDSView"},{"attributes":{"data_source":{"id":"1493","type":"ColumnDataSource"},"glyph":{"id":"1534","type":"Line"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"1535","type":"Line"},"selection_glyph":null,"view":{"id":"1537","type":"CDSView"}},"id":"1536","type":"GlyphRenderer"},{"attributes":{"line_alpha":0.1,"line_color":"#1f77b4","line_width":3,"x":{"field":"x"},"y":{"field":"y1"}},"id":"1535","type":"Line"},{"attributes":{"line_alpha":0.6,"line_color":"red","line_width":3,"x":{"field":"x"},"y":{"field":"y1"}},"id":"1534","type":"Line"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_multi":null,"active_scroll":"auto","active_tap":"auto","tools":[{"id":"1513","type":"PanTool"},{"id":"1514","type":"WheelZoomTool"},{"id":"1515","type":"BoxZoomTool"},{"id":"1516","type":"SaveTool"},{"id":"1517","type":"ResetTool"},{"id":"1518","type":"HelpTool"}]},"id":"1519","type":"Toolbar"},{"attributes":{},"id":"1518","type":"HelpTool"},{"attributes":{"data_source":{"id":"1493","type":"ColumnDataSource"},"glyph":{"id":"1529","type":"Line"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"1530","type":"Line"},"selection_glyph":null,"view":{"id":"1532","type":"CDSView"}},"id":"1531","type":"GlyphRenderer"},{"attributes":{"line_alpha":0.1,"line_color":"#1f77b4","line_width":3,"x":{"field":"x"},"y":{"field":"y0"}},"id":"1530","type":"Line"},{"attributes":{"overlay":{"id":"1521","type":"BoxAnnotation"}},"id":"1515","type":"BoxZoomTool"},{"attributes":{},"id":"1514","type":"WheelZoomTool"},{"attributes":{},"id":"1517","type":"ResetTool"},{"attributes":{},"id":"1516","type":"SaveTool"},{"attributes":{},"id":"1513","type":"PanTool"},{"attributes":{"args":{"freq":{"id":"1539","type":"Slider"},"source":{"id":"1493","type":"ColumnDataSource"}},"code":"\n    var data = source.data;\n    var k = freq.value;\n    var x = data['x']\n    var y0 = data['y0']\n    var y1 = data['y1']\n    for (var i = 0; i &lt; x.length; i++) {\n        y0[i] = k+(1-k)*x[i];\n        y1[i] = k/(1-(1-k)*x[i]);\n    }\n    source.change.emit();\n"},"id":"1538","type":"CustomJS"}],"root_ids":["1542"]},"title":"Bokeh Application","version":"1.0.2"}}
 
         </script>
 
         </script>
 
         <script type="text/javascript">
 
         <script type="text/javascript">
Line 50: Line 69:
 
                   function embed_document(root) {
 
                   function embed_document(root) {
 
                      
 
                      
                   var docs_json = document.getElementById('1124').textContent;
+
                   var docs_json = document.getElementById('1615').textContent;
                   var render_items = [{"docid":"12fcf5fa-eb2b-4212-b695-52540d1bde88","roots":{"1051":"538a509d-e6cd-4f11-ae0b-0cc81abe235e"}}];
+
                   var render_items = [{"docid":"5e99dd87-ef63-471c-ac32-90aba1a5be5a","roots":{"1542":"0a3d58d8-edf7-46d8-a100-536fcb083c22"}}];
 
                   root.Bokeh.embed.embed_items(docs_json, render_items);
 
                   root.Bokeh.embed.embed_items(docs_json, render_items);
 
                  
 
                  
Line 78: Line 97:
 
           })();
 
           })();
 
         </script>
 
         </script>
 +
    </div>
 +
  </body>
 +
 
 +
</html>
 +
 +
 +
The number of moles in each phase (liquid or vapor) can be obtained from the lever rule:
 +
<center>
 +
<math>n^l\overline{\text{BK}}=n^v\overline{\text{KR}}</math>
 +
</center>
 +
 +
 +
<html lang="en">
 +
 
 +
  <head>
 +
      <div align='center'>
 +
   
 +
      <meta charset="utf-8">
 +
      <title>slider.py example</title>
 +
     
 +
     
 +
       
 +
         
 +
        <link rel="stylesheet" href="https://cdn.pydata.org/bokeh/release/bokeh-1.0.4.min.css" type="text/css" />
 +
        <link rel="stylesheet" href="https://cdn.pydata.org/bokeh/release/bokeh-widgets-1.0.4.min.css" type="text/css" />
 +
       
 +
       
 +
         
 +
        <script type="text/javascript" src="https://cdn.pydata.org/bokeh/release/bokeh-1.0.4.min.js"></script>
 +
        <script type="text/javascript" src="https://cdn.pydata.org/bokeh/release/bokeh-widgets-1.0.4.min.js"></script>
 +
        <script type="text/javascript">
 +
            Bokeh.set_log_level("info");
 +
        </script>
 +
       
 +
     
 +
     
 +
   
 +
  </head>
 +
 
 +
 
 +
  <body>
 
      
 
      
 +
     
 +
       
 +
         
 +
         
 +
           
 +
              <div class="bk-root" id="3b715907-4e69-4660-a7f3-4279658d028a" data-root-id="12384"></div>
 +
           
 +
         
 +
       
 +
     
 +
     
 +
        <script type="application/json" id="12507">
 +
          {"98005dec-a5d3-43ec-a523-7494f747438f":{"roots":{"references":[{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":7},"x":{"field":"x2"},"y":{"field":"y2"}},"id":"12328","type":"Circle"},{"attributes":{"children":[{"id":"12378","type":"WidgetBox"},{"id":"12379","type":"WidgetBox"}]},"id":"12380","type":"Row"},{"attributes":{},"id":"12245","type":"LinearScale"},{"attributes":{},"id":"12257","type":"PanTool"},{"attributes":{"line_alpha":0.1,"line_color":"#1f77b4","line_width":3,"x":{"field":"x"},"y":{"field":"y1"}},"id":"12313","type":"Line"},{"attributes":{"data_source":{"id":"12237","type":"ColumnDataSource"},"glyph":{"id":"12307","type":"Line"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"12308","type":"Line"},"selection_glyph":null,"view":{"id":"12310","type":"CDSView"}},"id":"12309","type":"GlyphRenderer"},{"attributes":{"callback":null,"end":6,"start":4},"id":"12273","type":"Range1d"},{"attributes":{},"id":"12279","type":"LinearScale"},{"attributes":{"axis_label":"Vapor pressure (a.u.)","formatter":{"id":"12358","type":"BasicTickFormatter"},"plot":{"id":"12238","subtype":"Figure","type":"Plot"},"ticker":{"id":"12253","type":"BasicTicker"}},"id":"12252","type":"LinearAxis"},{"attributes":{"source":{"id":"12237","type":"ColumnDataSource"}},"id":"12345","type":"CDSView"},{"attributes":{},"id":"12292","type":"WheelZoomTool"},{"attributes":{"callback":null},"id":"12275","type":"Range1d"},{"attributes":{"line_alpha":0.6,"line_dash":[2,4],"line_width":3,"x":{"field":"x2"},"y":{"field":"y"}},"id":"12322","type":"Line"},{"attributes":{"below":[{"id":"12281","type":"LinearAxis"}],"left":[{"id":"12286","type":"LinearAxis"}],"plot_height":400,"plot_width":400,"renderers":[{"id":"12281","type":"LinearAxis"},{"id":"12285","type":"Grid"},{"id":"12286","type":"LinearAxis"},{"id":"12290","type":"Grid"},{"id":"12299","type":"BoxAnnotation"},{"id":"12344","type":"GlyphRenderer"},{"id":"12347","type":"GlyphRenderer"}],"title":{"id":"12365","type":"Title"},"toolbar":{"id":"12297","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"12273","type":"Range1d"},"x_scale":{"id":"12277","type":"LinearScale"},"y_range":{"id":"12275","type":"Range1d"},"y_scale":{"id":"12279","type":"LinearScale"}},"id":"12272","subtype":"Figure","type":"Plot"},{"attributes":{"source":{"id":"12237","type":"ColumnDataSource"}},"id":"12330","type":"CDSView"},{"attributes":{},"id":"12366","type":"BasicTickFormatter"},{"attributes":{"dimension":1,"plot":{"id":"12272","subtype":"Figure","type":"Plot"},"ticker":{"id":"12287","type":"BasicTicker"}},"id":"12290","type":"Grid"},{"attributes":{"source":{"id":"12237","type":"ColumnDataSource"}},"id":"12310","type":"CDSView"},{"attributes":{"plot":{"id":"12272","subtype":"Figure","type":"Plot"},"ticker":{"id":"12282","type":"BasicTicker"}},"id":"12285","type":"Grid"},{"attributes":{},"id":"12367","type":"BasicTickFormatter"},{"attributes":{"line_alpha":0.1,"line_color":"#1f77b4","line_width":3,"x":{"field":"x"},"y":{"field":"y0"}},"id":"12308","type":"Line"},{"attributes":{"bottom":{"field":"bottom"},"fill_color":{"value":"blue"},"left":{"field":"left"},"right":{"field":"right"},"top":{"field":"nl"}},"id":"12343","type":"Quad"},{"attributes":{"fill_color":{"value":"black"},"size":{"units":"screen","value":7},"x":{"field":"x2"},"y":{"field":"y2"}},"id":"12327","type":"Circle"},{"attributes":{"axis_label":"Mole fraction","formatter":{"id":"12367","type":"BasicTickFormatter"},"plot":{"id":"12272","subtype":"Figure","type":"Plot"},"ticker":{"id":"12287","type":"BasicTicker"}},"id":"12286","type":"LinearAxis"},{"attributes":{"callback":{"id":"12351","type":"CustomJS"},"end":1,"start":0,"step":0.01,"title":"x","value":0.5},"id":"12353","type":"Slider"},{"attributes":{},"id":"12248","type":"BasicTicker"},{"attributes":{"data_source":{"id":"12237","type":"ColumnDataSource"},"glyph":{"id":"12312","type":"Line"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"12313","type":"Line"},"selection_glyph":null,"view":{"id":"12315","type":"CDSView"}},"id":"12314","type":"GlyphRenderer"},{"attributes":{"tools":[{"id":"12257","type":"PanTool"},{"id":"12258","type":"WheelZoomTool"},{"id":"12259","type":"BoxZoomTool"},{"id":"12260","type":"SaveTool"},{"id":"12261","type":"ResetTool"},{"id":"12262","type":"HelpTool"},{"id":"12291","type":"PanTool"},{"id":"12292","type":"WheelZoomTool"},{"id":"12293","type":"BoxZoomTool"},{"id":"12294","type":"SaveTool"},{"id":"12295","type":"ResetTool"},{"id":"12296","type":"HelpTool"}]},"id":"12382","type":"ProxyToolbar"},{"attributes":{"line_alpha":0.6,"line_dash":[2,4],"line_width":3,"x":{"field":"x"},"y":{"field":"y2"}},"id":"12317","type":"Line"},{"attributes":{"children":[{"id":"12238","subtype":"Figure","type":"Plot"},{"id":"12272","subtype":"Figure","type":"Plot"}]},"id":"12373","type":"Row"},{"attributes":{},"id":"12291","type":"PanTool"},{"attributes":{"source":{"id":"12237","type":"ColumnDataSource"}},"id":"12320","type":"CDSView"},{"attributes":{},"id":"12360","type":"UnionRenderers"},{"attributes":{},"id":"12358","type":"BasicTickFormatter"},{"attributes":{},"id":"12253","type":"BasicTicker"},{"attributes":{"source":{"id":"12237","type":"ColumnDataSource"}},"id":"12315","type":"CDSView"},{"attributes":{"overlay":{"id":"12299","type":"BoxAnnotation"}},"id":"12293","type":"BoxZoomTool"},{"attributes":{"plot":null,"text":""},"id":"12365","type":"Title"},{"attributes":{},"id":"12287","type":"BasicTicker"},{"attributes":{},"id":"12361","type":"Selection"},{"attributes":{"callback":null,"end":5},"id":"12241","type":"Range1d"},{"attributes":{"source":{"id":"12237","type":"ColumnDataSource"}},"id":"12325","type":"CDSView"},{"attributes":{"children":[{"id":"12373","type":"Row"},{"id":"12380","type":"Row"}]},"id":"12381","type":"Column"},{"attributes":{"below":[{"id":"12247","type":"LinearAxis"}],"left":[{"id":"12252","type":"LinearAxis"}],"plot_height":400,"plot_width":400,"renderers":[{"id":"12247","type":"LinearAxis"},{"id":"12251","type":"Grid"},{"id":"12252","type":"LinearAxis"},{"id":"12256","type":"Grid"},{"id":"12265","type":"BoxAnnotation"},{"id":"12309","type":"GlyphRenderer"},{"id":"12314","type":"GlyphRenderer"},{"id":"12319","type":"GlyphRenderer"},{"id":"12324","type":"GlyphRenderer"},{"id":"12329","type":"GlyphRenderer"},{"id":"12334","type":"GlyphRenderer"},{"id":"12339","type":"GlyphRenderer"},{"id":"12341","type":"Label"},{"id":"12342","type":"Label"}],"title":{"id":"12355","type":"Title"},"toolbar":{"id":"12263","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"12239","type":"Range1d"},"x_scale":{"id":"12243","type":"LinearScale"},"y_range":{"id":"12241","type":"Range1d"},"y_scale":{"id":"12245","type":"LinearScale"}},"id":"12238","subtype":"Figure","type":"Plot"},{"attributes":{"dimension":1,"plot":{"id":"12238","subtype":"Figure","type":"Plot"},"ticker":{"id":"12253","type":"BasicTicker"}},"id":"12256","type":"Grid"},{"attributes":{"children":[{"id":"12353","type":"Slider"}]},"id":"12379","type":"WidgetBox"},{"attributes":{},"id":"12356","type":"BasicTickFormatter"},{"attributes":{"plot":null,"text":""},"id":"12355","type":"Title"},{"attributes":{"fill_color":{"value":"blue"},"line_color":{"value":"blue"},"size":{"units":"screen","value":7},"x":{"field":"xcut"},"y":{"field":"y2"}},"id":"12332","type":"Circle"},{"attributes":{"data_source":{"id":"12237","type":"ColumnDataSource"},"glyph":{"id":"12317","type":"Line"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"12318","type":"Line"},"selection_glyph":null,"view":{"id":"12320","type":"CDSView"}},"id":"12319","type":"GlyphRenderer"},{"attributes":{"line_alpha":0.6,"line_color":"blue","line_width":3,"x":{"field":"x"},"y":{"field":"y0"}},"id":"12307","type":"Line"},{"attributes":{"data_source":{"id":"12237","type":"ColumnDataSource"},"glyph":{"id":"12322","type":"Line"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"12323","type":"Line"},"selection_glyph":null,"view":{"id":"12325","type":"CDSView"}},"id":"12324","type":"GlyphRenderer"},{"attributes":{"callback":{"id":"12351","type":"CustomJS"},"end":5,"start":0,"step":0.01,"title":"p","value":2.5},"id":"12352","type":"Slider"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_multi":null,"active_scroll":"auto","active_tap":"auto","tools":[{"id":"12257","type":"PanTool"},{"id":"12258","type":"WheelZoomTool"},{"id":"12259","type":"BoxZoomTool"},{"id":"12260","type":"SaveTool"},{"id":"12261","type":"ResetTool"},{"id":"12262","type":"HelpTool"}]},"id":"12263","type":"Toolbar"},{"attributes":{"fill_color":{"value":"red"},"line_color":{"value":"red"},"size":{"units":"screen","value":7},"x":{"field":"xcut2"},"y":{"field":"y2"}},"id":"12337","type":"Circle"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":7},"x":{"field":"xcut2"},"y":{"field":"y2"}},"id":"12338","type":"Circle"},{"attributes":{},"id":"12282","type":"BasicTicker"},{"attributes":{"bottom_units":"screen","fill_alpha":{"value":0.5},"fill_color":{"value":"lightgrey"},"left_units":"screen","level":"overlay","line_alpha":{"value":1.0},"line_color":{"value":"black"},"line_dash":[4,4],"line_width":{"value":2},"plot":null,"render_mode":"css","right_units":"screen","top_units":"screen"},"id":"12299","type":"BoxAnnotation"},{"attributes":{"data_source":{"id":"12237","type":"ColumnDataSource"},"glyph":{"id":"12337","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"12338","type":"Circle"},"selection_glyph":null,"view":{"id":"12340","type":"CDSView"}},"id":"12339","type":"GlyphRenderer"},{"attributes":{"plot":{"id":"12238","subtype":"Figure","type":"Plot"},"text":"Vapor","x":0.7,"y":1},"id":"12342","type":"Label"},{"attributes":{},"id":"12243","type":"LinearScale"},{"attributes":{"bottom_units":"screen","fill_alpha":{"value":0.5},"fill_color":{"value":"lightgrey"},"left_units":"screen","level":"overlay","line_alpha":{"value":1.0},"line_color":{"value":"black"},"line_dash":[4,4],"line_width":{"value":2},"plot":null,"render_mode":"css","right_units":"screen","top_units":"screen"},"id":"12265","type":"BoxAnnotation"},{"attributes":{"axis_label":"Mole fraction of A","formatter":{"id":"12356","type":"BasicTickFormatter"},"plot":{"id":"12238","subtype":"Figure","type":"Plot"},"ticker":{"id":"12248","type":"BasicTicker"}},"id":"12247","type":"LinearAxis"},{"attributes":{},"id":"12262","type":"HelpTool"},{"attributes":{"ticks":[1,2]},"id":"12349","type":"FixedTicker"},{"attributes":{"source":{"id":"12237","type":"ColumnDataSource"}},"id":"12335","type":"CDSView"},{"attributes":{"data_source":{"id":"12237","type":"ColumnDataSource"},"glyph":{"id":"12327","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"12328","type":"Circle"},"selection_glyph":null,"view":{"id":"12330","type":"CDSView"}},"id":"12329","type":"GlyphRenderer"},{"attributes":{"children":[{"id":"12383","type":"ToolbarBox"},{"id":"12381","type":"Column"}]},"id":"12384","type":"Column"},{"attributes":{},"id":"12261","type":"ResetTool"},{"attributes":{"children":[{"id":"12352","type":"Slider"}]},"id":"12378","type":"WidgetBox"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":7},"x":{"field":"xcut"},"y":{"field":"y2"}},"id":"12333","type":"Circle"},{"attributes":{"source":{"id":"12237","type":"ColumnDataSource"}},"id":"12340","type":"CDSView"},{"attributes":{"callback":null},"id":"12239","type":"Range1d"},{"attributes":{"data_source":{"id":"12237","type":"ColumnDataSource"},"glyph":{"id":"12332","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"12333","type":"Circle"},"selection_glyph":null,"view":{"id":"12335","type":"CDSView"}},"id":"12334","type":"GlyphRenderer"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_multi":null,"active_scroll":"auto","active_tap":"auto","tools":[{"id":"12291","type":"PanTool"},{"id":"12292","type":"WheelZoomTool"},{"id":"12293","type":"BoxZoomTool"},{"id":"12294","type":"SaveTool"},{"id":"12295","type":"ResetTool"},{"id":"12296","type":"HelpTool"}]},"id":"12297","type":"Toolbar"},{"attributes":{"args":{"p":{"id":"12352","type":"Slider"},"source":{"id":"12237","type":"ColumnDataSource"},"xx":{"id":"12353","type":"Slider"}},"code":"\n    var data = source.data;\n    var p = p.value;\n    var xx = xx.value;\n    var x = data['x']\n    var xcut = data['xcut']\n    var xcut2 = data['xcut2']\n    var x2 = data['x2']\n    var y2 = data['y2']\n    var nl = data['nl']\n    var ng = data['ng']\n    for(var i = 0; i &lt; x.length; i++) {\n      y2[i] = p;\n      x2[i] = xx;\n      xcut[i] = (p-1)/4;\n      xcut2[i] = 5*(p-1)/(4*p);\n      nl[i]=(xcut2[i]-x2[i])/(x2[i]-xcut[i])/(1+(xcut2[i]-x2[i])/(x2[i]-xcut[i]))\n      if(nl[i]&gt;1) nl[i]=1\n      ng[i]=1-nl[i]\n      if(ng[i]&gt;1) ng[i]=1\n      if(p&lt;1) {ng[i]=1;nl[i]=0}\n      if(p&gt;4) {ng[i]=0;nl[i]=1}\n      if(xcut[i]&gt;xx) {xcut[i]=-1;xcut2[i]=-1};\n      if(xcut2[i]&lt;xx) {xcut[i]=-1;xcut2[i]=-1};\n    }\n    source.change.emit();\n"},"id":"12351","type":"CustomJS"},{"attributes":{},"id":"12295","type":"ResetTool"},{"attributes":{"data_source":{"id":"12237","type":"ColumnDataSource"},"glyph":{"id":"12346","type":"Quad"},"hover_glyph":null,"muted_glyph":null,"view":{"id":"12348","type":"CDSView"}},"id":"12347","type":"GlyphRenderer"},{"attributes":{},"id":"12296","type":"HelpTool"},{"attributes":{"line_alpha":0.1,"line_color":"#1f77b4","line_dash":[2,4],"line_width":3,"x":{"field":"x2"},"y":{"field":"y"}},"id":"12323","type":"Line"},{"attributes":{"source":{"id":"12237","type":"ColumnDataSource"}},"id":"12348","type":"CDSView"},{"attributes":{"overlay":{"id":"12265","type":"BoxAnnotation"}},"id":"12259","type":"BoxZoomTool"},{"attributes":{},"id":"12294","type":"SaveTool"},{"attributes":{"plot":{"id":"12238","subtype":"Figure","type":"Plot"},"text":"Liquid","x":0.2,"y":3.5},"id":"12341","type":"Label"},{"attributes":{"toolbar":{"id":"12382","type":"ProxyToolbar"},"toolbar_location":"above"},"id":"12383","type":"ToolbarBox"},{"attributes":{},"id":"12260","type":"SaveTool"},{"attributes":{"plot":{"id":"12238","subtype":"Figure","type":"Plot"},"ticker":{"id":"12248","type":"BasicTicker"}},"id":"12251","type":"Grid"},{"attributes":{"callback":null,"data":{"bottom":{"__ndarray__":"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=","dtype":"float64","shape":[100]},"left":{"__ndarray__":"AAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEA=","dtype":"float64","shape":[100]},"left2":{"__ndarray__":"AAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEA=","dtype":"float64","shape":[100]},"ng":{"__ndarray__":"VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T9WVVVVVVXVP1ZVVVVVVdU/VlVVVVVV1T8=","dtype":"float64","shape":[100]},"nl":{"__ndarray__":"VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T8=","dtype":"float64","shape":[100]},"right":{"__ndarray__":"AAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEA=","dtype":"float64","shape":[100]},"right2":{"__ndarray__":"AAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEA=","dtype":"float64","shape":[100]},"top":{"__ndarray__":"VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T9VVVVVVVXlP1VVVVVVVeU/VVVVVVVV5T8=","dtype":"float64","shape":[100]},"x":{"__ndarray__":"AAAAAAAAAABbv1Kg1q+EP1u/UqDWr5Q/CB988MEHnz9bv1Kg1q+kPzJvZ0jM26k/CB988MEHrz9wZ0jM2xmyP1u/UqDWr7Q/RhdddNFFtz8yb2dIzNu5Px3HcRzHcbw/CB988MEHvz96O0Ni3s7AP3BnSMzbGcI/ZZNNNtlkwz9bv1Kg1q/EP1HrVwrU+sU/RhdddNFFxz88Q2LezpDIPzJvZ0jM28k/J5tssskmyz8dx3Ecx3HMPxPzdobEvM0/CB988MEHzz9/pUCtXynQP3o7Q2LeztA/ddFFF1100T9wZ0jM2xnSP2r9SoFav9I/ZZNNNtlk0z9gKVDrVwrUP1u/UqDWr9Q/VlVVVVVV1T9R61cK1PrVP0yBWr9SoNY/RhdddNFF1z9BrV8pUOvXPzxDYt7OkNg/N9lkk0022T8yb2dIzNvZPy0Fav1Kgdo/J5tssskm2z8iMW9nSMzbPx3HcRzHcdw/GF100UUX3T8T83aGxLzdPw6JeTtDYt4/CB988MEH3z8DtX6lQK3fP3+lQK1fKeA/ffDBBx984D96O0Ni3s7gP3eGxLydIeE/ddFFF1104T9yHMdxHMfhP3BnSMzbGeI/bbLJJpts4j9q/UqBWr/iP2hIzNsZEuM/ZZNNNtlk4z9j3s6QmLfjP2ApUOtXCuQ/XnTRRRdd5D9bv1Kg1q/kP1gK1PqVAuU/VlVVVVVV5T9ToNavFKjlP1HrVwrU+uU/TjbZZJNN5j9MgVq/UqDmP0nM2xkS8+Y/RhdddNFF5z9EYt7OkJjnP0GtXylQ6+c/P/jggw8+6D88Q2LezpDoPzmO4ziO4+g/N9lkk0026T80JObtDInpPzJvZ0jM2+k/L7rooosu6j8tBWr9SoHqPypQ61cK1Oo/J5tssskm6z8l5u0MiXnrPyIxb2dIzOs/IHzwwQcf7D8dx3Ecx3HsPxsS83aGxOw/GF100UUX7T8VqPUrBWrtPxPzdobEvO0/ED744IMP7j8OiXk7Q2LuPwvU+pUCte4/CB988MEH7z8Gav1KgVrvPwO1fqVAre8/AAAAAAAA8D8=","dtype":"float64","shape":[100]},"x2":{"__ndarray__":"AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8AAAAAAADgPwAAAAAAAOA/AAAAAAAA4D8=","dtype":"float64","shape":[100]},"xcut":{"__ndarray__":"AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8AAAAAAADYPwAAAAAAANg/AAAAAAAA2D8=","dtype":"float64","shape":[100]},"xcut2":{"__ndarray__":"AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8AAAAAAADoPwAAAAAAAOg/AAAAAAAA6D8=","dtype":"float64","shape":[100]},"y":{"__ndarray__":"AAAAAAAAAAAxb2dIzNupPzFvZ0jM27k/ZZNNNtlkwz8xb2dIzNvJP3+lQK1fKdA/ZZNNNtlk0z9LgVq/UqDWPzFvZ0jM29k/F1100UUX3T9/pUCtXyngP3Icx3Ecx+E/ZZNNNtlk4z9YCtT6lQLlP0uBWr9SoOY/Pvjggw8+6D8xb2dIzNvpPyTm7QyJees/F1100UUX7T8K1PqVArXuP3+lQK1fKfA/+OCDDz748D9yHMdxHMfxP+tXCtT6lfI/ZZNNNtlk8z/ezpCYtzP0P1gK1PqVAvU/0UUXXXTR9T9LgVq/UqD2P8S8nSExb/c/Pvjggw8++D+3MyTm7Qz5PzFvZ0jM2/k/q6qqqqqq+j8k5u0MiXn7P54hMW9nSPw/F1100UUX/T+RmLczJOb9PwrU+pUCtf4/hA8++OCD/z9/pUCtXykAQDtDYt7OkABA+OCDDz74AEC1fqVArV8BQHIcx3EcxwFALrrooosuAkDrVwrU+pUCQKj1KwVq/QJAZZNNNtlkA0AiMW9nSMwDQN7OkJi3MwRAm2yyySabBEBYCtT6lQIFQBWo9SsFagVA0UUXXXTRBUCO4ziO4zgGQEuBWr9SoAZACB988MEHB0DEvJ0hMW8HQIFav1Kg1gdAPvjggw8+CED7lQK1fqUIQLczJObtDAlAdNFFF110CUAxb2dIzNsJQO4MiXk7QwpAq6qqqqqqCkBnSMzbGRILQCTm7QyJeQtA4YMPPvjgC0CeITFvZ0gMQFq/UqDWrwxAF1100UUXDUDU+pUCtX4NQJGYtzMk5g1ATTbZZJNNDkAK1PqVArUOQMdxHMdxHA9AhA8++OCDD0BArV8pUOsPQH+lQK1fKRBAXXTRRRddEEA7Q2LezpAQQBoS83aGxBBA+OCDDz74EEDXrxSo9SsRQLV+pUCtXxFAk0022WSTEUByHMdxHMcRQFDrVwrU+hFALrrooosuEkANiXk7Q2ISQOtXCtT6lRJAyiabbLLJEkCo9SsFav0SQIbEvJ0hMRNAZZNNNtlkE0BDYt7OkJgTQCIxb2dIzBNAAAAAAAAAFEA=","dtype":"float64","shape":[100]},"y0":{"__ndarray__":"AAAAAAAA8D/7lQK1fqXwP/YrBWr9SvE/8MEHH3zw8T/rVwrU+pXyP+btDIl5O/M/4YMPPvjg8z/cGRLzdob0P9evFKj1K/U/0kUXXXTR9T/M2xkS83b2P8dxHMdxHPc/wgcffPDB9z+9nSExb2f4P7gzJObtDPk/sskmm2yy+T+uXylQ61f6P6j1KwVq/fo/o4suuuii+z+eITFvZ0j8P5m3MyTm7fw/lE022WST/T+O4ziO4zj+P4p5O0Ni3v4/hA8++OCD/z/AUqDWrxQAQL2dITFvZwBAuuiiiy66AEC4MyTm7QwBQLV+pUCtXwFAsskmm2yyAUCwFKj1KwUCQK5fKVDrVwJAq6qqqqqqAkCo9SsFav0CQKZArV8pUANAo4suuuiiA0Cg1q8UqPUDQJ4hMW9nSARAnGyyySabBECZtzMk5u0EQJYCtX6lQAVAlE022WSTBUCRmLczJOYFQI7jOI7jOAZAjC666KKLBkCKeTtDYt4GQIfEvJ0hMQdAhA8++OCDB0CCWr9SoNYHQH+lQK1fKQhAffDBBx98CEB6O0Ni3s4IQHeGxLydIQlAddFFF110CUByHMdxHMcJQHBnSMzbGQpAbbLJJptsCkBq/UqBWr8KQGhIzNsZEgtAZZNNNtlkC0Bj3s6QmLcLQGApUOtXCgxAXnTRRRddDEBbv1Kg1q8MQFgK1PqVAg1AVlVVVVVVDUBToNavFKgNQFHrVwrU+g1ATjbZZJNNDkBMgVq/UqAOQEnM2xkS8w5ARhdddNFFD0BEYt7OkJgPQEGtXylQ6w9AIHzwwQcfEECeITFvZ0gQQBzHcRzHcRBAnGyyySabEEAaEvN2hsQQQJm3MyTm7RBAGF100UUXEUCWArV+pUARQBWo9SsFahFAlE022WSTEUAS83aGxLwRQJGYtzMk5hFAED744IMPEkCO4ziO4zgSQA6JeTtDYhJAjC666KKLEkAK1PqVArUSQIp5O0Ni3hJACB988MEHE0CHxLydITETQAZq/UqBWhNAhA8++OCDE0ADtX6lQK0TQIJav1Kg1hNAAAAAAAAAFEA=","dtype":"float64","shape":[100]},"y1":{"__ndarray__":"AAAAAAAA8D/aXeReXiHwP3nWWBFJQ/A/4jLgk8Nl8D9BOs2A0YjwP8gKhJF2rPA/WNLLn7bQ8D9m4jGnlfXwP64rf8YXG/E/QUFBQUFB8T+BFmiBFmjxP5DB+Ricj/E/OKPdw9a38T/0bsBpy+DxPx2pEiB/CvI/c08jLPc08j9MgFgFOWDyP/sXiFdKjPI/C2JyBTG58j9GJWEr8+byP3V+7SGXFfM/ty7vgCNF8z9aN5gin3XzP1jXvyYRp/M/mD1g9oDZ8z8aiEpH9gz0P5DzFCB5QfQ/HnFH3BF39D8iMsswya30P18cojCo5fQ/HoXrUbge9T9ICDxzA1n1P6nSTuGTlPU/0kUXXXTR9T86eToisA/2P+vJ+O1ST/Y/B2mQBmmQ9j+irCJD/9L2P33PJhQjF/c/Ks51jOJc9z/aLfxqTKT3P8G1HyVw7fc/hoPo8V04+D80av7VJoX4P8s9jbDc0/g/SpIkSZIk+T+0kaleW3f5P6foc7dMzPk//myxMnwj+j8fFy/bAH36P2g4qfvy2Po/zJPINGw3+z8rMPaUh5j7P2h3NLJh/Ps/ZIwxxhhj/D/NzMzMzMz8P5NLUKWfOf0/29SmNrWp/T/a4N+WMx3+P0XpXDZDlP4/Dw8PDw8P/z+VHTnYxI3/P4WAnJ9KCABAvoT2EtpLAEAamK5zrJEAQKO+s1Hf2QBASpIkSZIkAUDyTn4w53EBQBFOxEsCwgFAUaFChQoVAkCcsqasKWsCQAooRb2MxAJAspCFLGQhA0D8i5NB5IEDQHxgo3dF5gNA7sRO7MROBECrv8/bpLsEQC0tLS0tLQVAUXHJEKyjBUBtfDO0dh8GQBDqoA7qoAZAh/IaymsoB0Dx/C1Oa7YHQKhy3fFiSwhAqQnGW9nnCECOMcYYY4wJQJPmSHOkOQpAvpyCl1PwCkAVO7ETO7ELQL8O6MY8fQxAV1VVVVVVDUA9y4g+oDoOQM7lcrlcLg9AGpyPwfkYEEDufqPsfqMQQNWb3vSmNxFAaN1ginzWEUCzojQ+MoESQGcRn0AqORNAAAAAAAAAFEA=","dtype":"float64","shape":[100]},"y2":{"__ndarray__":"AAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEAAAAAAAAAEQAAAAAAAAARAAAAAAAAABEA=","dtype":"float64","shape":[100]}},"selected":{"id":"12361","type":"Selection"},"selection_policy":{"id":"12360","type":"UnionRenderers"}},"id":"12237","type":"ColumnDataSource"},{"attributes":{"line_alpha":0.6,"line_color":"red","line_width":3,"x":{"field":"x"},"y":{"field":"y1"}},"id":"12312","type":"Line"},{"attributes":{"line_alpha":0.1,"line_color":"#1f77b4","line_dash":[2,4],"line_width":3,"x":{"field":"x"},"y":{"field":"y2"}},"id":"12318","type":"Line"},{"attributes":{"axis_label":"Liquid                                  Vapor","formatter":{"id":"12366","type":"BasicTickFormatter"},"plot":{"id":"12272","subtype":"Figure","type":"Plot"},"ticker":{"id":"12349","type":"FixedTicker"}},"id":"12281","type":"LinearAxis"},{"attributes":{},"id":"12258","type":"WheelZoomTool"},{"attributes":{"bottom":{"field":"bottom"},"fill_color":{"value":"red"},"left":{"field":"left2"},"right":{"field":"right2"},"top":{"field":"ng"}},"id":"12346","type":"Quad"},{"attributes":{"data_source":{"id":"12237","type":"ColumnDataSource"},"glyph":{"id":"12343","type":"Quad"},"hover_glyph":null,"muted_glyph":null,"view":{"id":"12345","type":"CDSView"}},"id":"12344","type":"GlyphRenderer"},{"attributes":{},"id":"12277","type":"LinearScale"}],"root_ids":["12384"]},"title":"Bokeh Application","version":"1.0.4"}}
 +
        </script>
 +
        <script type="text/javascript">
 +
          (function() {
 +
            var fn = function() {
 +
              Bokeh.safely(function() {
 +
                (function(root) {
 +
                  function embed_document(root) {
 +
                   
 +
                  var docs_json = document.getElementById('12507').textContent;
 +
                  var render_items = [{"docid":"98005dec-a5d3-43ec-a523-7494f747438f","roots":{"12384":"3b715907-4e69-4660-a7f3-4279658d028a"}}];
 +
                  root.Bokeh.embed.embed_items(docs_json, render_items);
 +
               
 +
                  }
 +
                  if (root.Bokeh !== undefined) {
 +
                    embed_document(root);
 +
                  } else {
 +
                    var attempts = 0;
 +
                    var timer = setInterval(function(root) {
 +
                      if (root.Bokeh !== undefined) {
 +
                        embed_document(root);
 +
                        clearInterval(timer);
 +
                      }
 +
                      attempts++;
 +
                      if (attempts > 100) {
 +
                        console.log("Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing");
 +
                        clearInterval(timer);
 +
                      }
 +
                    }, 10, root)
 +
                  }
 +
                })(window);
 +
              });
 +
            };
 +
            if (document.readyState != "loading") fn();
 +
            else document.addEventListener("DOMContentLoaded", fn);
 +
          })();
 +
        </script>
 +
        </div>
 
   </body>
 
   </body>
 
    
 
    
 
</html>
 
</html>
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
Return to [[Main_Page]]

Latest revision as of 09:22, 29 May 2023

Phase diagram of an ideal solution at fixed temperature

The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are [math]p_A^*[/math] and [math]p_B^*[/math], respectively.

The blue curve shows the vapor pressure [math]p[/math] of the mixture as a function of the mole fraction of A in the liquid [math]x_A^l[/math]:

[math]p=p_B^*+(p_A^*-p_B^*)x_A^l[/math]

The red curve shows the vapor pressure [math]p[/math] of the mixture as a function of the mole fraction of A in the vapor [math]x_A^v[/math]:

[math]p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}[/math]

In the example below [math]p_A^*=1[/math] (a.u.) and the value of [math]p_B^*[/math] can be changed moving the slider below.


slider.py example


The number of moles in each phase (liquid or vapor) can be obtained from the lever rule:

[math]n^l\overline{\text{BK}}=n^v\overline{\text{KR}}[/math]


slider.py example







Return to Main_Page