Difference between revisions of "Thermodynamics"
Jump to navigation
Jump to search
slider.py example
(→Vapor-liquid equilibrium diagram of an ideal mixture) |
(→Vapor-liquid equilibrium diagram of an ideal mixture) |
||
Line 6: | Line 6: | ||
The blue curve shows the vapor pressure of the mixture <math>p</math> as a function of the mole fraction of A in the liquid <math>x_A^l</math>: | The blue curve shows the vapor pressure of the mixture <math>p</math> as a function of the mole fraction of A in the liquid <math>x_A^l</math>: | ||
− | <math>p=p_B^*+(p_A^*-p_B^*)\ | + | <math>p=p_B^*+(p_A^*-p_B^*)\cdot x_A^l</math> |
The red curve shows the vapor pressure of the mixture <math>p</math> as a function of the mole fraction of A in the vapor <math>x_A^v</math>: | The red curve shows the vapor pressure of the mixture <math>p</math> as a function of the mole fraction of A in the vapor <math>x_A^v</math>: |
Revision as of 18:00, 21 April 2019
Vapor-liquid equilibrium diagram of an ideal mixture
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are [math]p_A^*[/math] and [math]p_B^*[/math], respectively.
The blue curve shows the vapor pressure of the mixture [math]p[/math] as a function of the mole fraction of A in the liquid [math]x_A^l[/math]:
[math]p=p_B^*+(p_A^*-p_B^*)\cdot x_A^l[/math]
The red curve shows the vapor pressure of the mixture [math]p[/math] as a function of the mole fraction of A in the vapor [math]x_A^v[/math]:
[math]p=p_A^*p_B^*/(p_A^*-(p_A^*-p_B^*)x_A^v)[/math]
In the example below [math]p_A^*=1[/math] (a.u.) and the value of [math]p_B^*[/math] can be changed moving the slider below.