Difference between revisions of "Thermodynamics"
								
								Jump to navigation
				Jump to search
				
				
		
 
 
   
      
      slider.py example 
      
      
        
          
        
        
        
        
          
        
        
        
        
      
      
    
  
  
  
  
    
      
        
          
          
            
              
            
          
        
      
      
        
        
    
  
  
					
								
							
		|  (→Vapor-liquid equilibrium diagram of an ideal mixture) |  (→Vapor-liquid equilibrium diagram of an ideal mixture) | ||
| Line 12: | Line 12: | ||
| The red curve shows the vapor pressure of the mixture <math>p</math> as a function of the mole fraction of A in the vapor <math>x_A^v</math>: | The red curve shows the vapor pressure of the mixture <math>p</math> as a function of the mole fraction of A in the vapor <math>x_A^v</math>: | ||
| + | <center> | ||
| <math>p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}</math> | <math>p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}</math> | ||
| + | </center> | ||
| In the example below <math>p_A^*=1</math> (a.u.) and the value of <math>p_B^*</math> can be changed moving the slider below. | In the example below <math>p_A^*=1</math> (a.u.) and the value of <math>p_B^*</math> can be changed moving the slider below. | ||
| </div> | </div> | ||
| + | |||
| + | |||
| <html lang="en"> | <html lang="en"> | ||
Revision as of 18:08, 21 April 2019
Vapor-liquid equilibrium diagram of an ideal mixture
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are [math]p_A^*[/math] and [math]p_B^*[/math], respectively.
The blue curve shows the vapor pressure of the mixture [math]p[/math] as a function of the mole fraction of A in the liquid [math]x_A^l[/math]:
[math]p=p_B^*+(p_A^*-p_B^*)x_A^l[/math]
The red curve shows the vapor pressure of the mixture [math]p[/math] as a function of the mole fraction of A in the vapor [math]x_A^v[/math]:
[math]p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}[/math]
In the example below [math]p_A^*=1[/math] (a.u.) and the value of [math]p_B^*[/math] can be changed moving the slider below.
