Difference between revisions of "Thermodynamics"
|  (→Phase diagram of an ideal solution at fixed temperature) |  (→Phase diagram of an ideal solution at fixed temperature) | ||
| Line 110: | Line 110: | ||
|    <head> |    <head> | ||
| + |       <div align='center'> | ||
|        <meta charset="utf-8"> |        <meta charset="utf-8"> | ||
| Line 185: | Line 186: | ||
|            })(); |            })(); | ||
|          </script> |          </script> | ||
| − | + |         </div> | |
|    </body> |    </body> | ||
| </html> | </html> | ||
Revision as of 07:17, 26 April 2019
Two-component vapor-liquid equilibrium
Phase diagram of an ideal solution at fixed temperature
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are [math]p_A^*[/math] and [math]p_B^*[/math], respectively.
The blue curve shows the vapor pressure [math]p[/math] of the mixture as a function of the mole fraction of A in the liquid [math]x_A^l[/math]:
[math]p=p_B^*+(p_A^*-p_B^*)x_A^l[/math]
The red curve shows the vapor pressure [math]p[/math] of the mixture as a function of the mole fraction of A in the vapor [math]x_A^v[/math]:
[math]p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}[/math]
In the example below [math]p_A^*=1[/math] (a.u.) and the value of [math]p_B^*[/math] can be changed moving the slider below.
  
  
      
