Difference between revisions of "Thermodynamics"
(→Two-component vapor-liquid equilibrium) |
|||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Phase diagram of an ideal solution at fixed temperature== | ==Phase diagram of an ideal solution at fixed temperature== |
Revision as of 18:09, 15 January 2020
Phase diagram of an ideal solution at fixed temperature
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are [math]p_A^*[/math] and [math]p_B^*[/math], respectively.
The blue curve shows the vapor pressure [math]p[/math] of the mixture as a function of the mole fraction of A in the liquid [math]x_A^l[/math]:
[math]p=p_B^*+(p_A^*-p_B^*)x_A^l[/math]
The red curve shows the vapor pressure [math]p[/math] of the mixture as a function of the mole fraction of A in the vapor [math]x_A^v[/math]:
[math]p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}[/math]
In the example below [math]p_A^*=1[/math] (a.u.) and the value of [math]p_B^*[/math] can be changed moving the slider below.
The number of moles in each phase (liquid or vapor) can be obtained from the lever rule:
[math]n^l\overline{\text{BK}}=n^v\overline{\text{KR}}[/math]
Return to Main_Page