Difference between revisions of "Thermodynamics"

From AutoMeKin
Jump to navigation Jump to search
(Phase diagram of an ideal solution at fixed temperature)
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
===Two-component vapor-liquid equilibrium===
 
 
 
==Phase diagram of an ideal solution at fixed temperature==
 
==Phase diagram of an ideal solution at fixed temperature==
 
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are <math>p_A^*</math> and <math>p_B^*</math>, respectively.  
 
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are <math>p_A^*</math> and <math>p_B^*</math>, respectively.  
Line 105: Line 103:
  
  
 +
The number of moles in each phase (liquid or vapor) can be obtained from the lever rule:
 +
<center>
 +
<math>n^l\overline{\text{BK}}=n^v\overline{\text{KR}}</math>
 +
</center>
  
  
Line 110: Line 112:
 
    
 
    
 
   <head>
 
   <head>
 +
      <div align='center'>
 
      
 
      
 
       <meta charset="utf-8">
 
       <meta charset="utf-8">
Line 185: Line 188:
 
           })();
 
           })();
 
         </script>
 
         </script>
   
+
        </div>
 
   </body>
 
   </body>
 
    
 
    
 
</html>
 
</html>
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
Return to [[Main_Page]]

Latest revision as of 09:22, 29 May 2023

Phase diagram of an ideal solution at fixed temperature

The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are p_A^* and p_B^*, respectively.

The blue curve shows the vapor pressure p of the mixture as a function of the mole fraction of A in the liquid x_A^l:

p=p_B^*+(p_A^*-p_B^*)x_A^l

The red curve shows the vapor pressure p of the mixture as a function of the mole fraction of A in the vapor x_A^v:

p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}

In the example below p_A^*=1 (a.u.) and the value of p_B^* can be changed moving the slider below.


slider.py example
5
5


The number of moles in each phase (liquid or vapor) can be obtained from the lever rule:

n^l\overline{\text{BK}}=n^v\overline{\text{KR}}


slider.py example
2.50
2.50
0.50
0.50







Return to Main_Page