Difference between revisions of "Thermodynamics"

From AutoMeKin
Jump to navigation Jump to search
(Vapor-liquid equilibrium diagram of an ideal mixture)
(Vapor-liquid equilibrium diagram of an ideal mixture)
Line 10: Line 10:
 
The red curve shows the vapor pressure of the mixture <math>p</math> as a function of the mole fraction of A in the vapor <math>x_A^v</math>:
 
The red curve shows the vapor pressure of the mixture <math>p</math> as a function of the mole fraction of A in the vapor <math>x_A^v</math>:
  
<math>p=p_A^*p_B^*/(p_A^*-(p_A^*-p_B^*)x_A^v)</math>
+
<math>p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}</math>
  
 
In the example below <math>p_A^*=1</math> (a.u.) and the value of <math>p_B^*</math> can be changed moving the slider below.
 
In the example below <math>p_A^*=1</math> (a.u.) and the value of <math>p_B^*</math> can be changed moving the slider below.

Revision as of 18:06, 21 April 2019

Vapor-liquid equilibrium diagram of an ideal mixture

The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are [math]p_A^*[/math] and [math]p_B^*[/math], respectively.

The blue curve shows the vapor pressure of the mixture [math]p[/math] as a function of the mole fraction of A in the liquid [math]x_A^l[/math]:

[math]p=p_B^*+(p_A^*-p_B^*)x_A^l[/math]

The red curve shows the vapor pressure of the mixture [math]p[/math] as a function of the mole fraction of A in the vapor [math]x_A^v[/math]:

[math]p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}[/math]

In the example below [math]p_A^*=1[/math] (a.u.) and the value of [math]p_B^*[/math] can be changed moving the slider below.

slider.py example