Difference between revisions of "Thermodynamics"
Jump to navigation
Jump to search
slider.py example
(→Vapor-liquid equilibrium diagram of an ideal mixture) |
(→Two-component vapor-liquid equilibrium) |
||
Line 1: | Line 1: | ||
===Two-component vapor-liquid equilibrium=== | ===Two-component vapor-liquid equilibrium=== | ||
+ | ==Phase diagram at fixed temperature== | ||
<div style="column-count:2;-moz-column-count:2;-webkit-column-count:2"> | <div style="column-count:2;-moz-column-count:2;-webkit-column-count:2"> | ||
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are <math>p_A^*</math> and <math>p_B^*</math>, respectively. | The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are <math>p_A^*</math> and <math>p_B^*</math>, respectively. |
Revision as of 18:17, 21 April 2019
Two-component vapor-liquid equilibrium
Phase diagram at fixed temperature
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are [math]p_A^*[/math] and [math]p_B^*[/math], respectively.
The blue curve shows the vapor pressure of the mixture [math]p[/math] as a function of the mole fraction of A in the liquid [math]x_A^l[/math]:
[math]p=p_B^*+(p_A^*-p_B^*)x_A^l[/math]
The red curve shows the vapor pressure of the mixture [math]p[/math] as a function of the mole fraction of A in the vapor [math]x_A^v[/math]:
[math]p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}[/math]
In the example below [math]p_A^*=1[/math] (a.u.) and the value of [math]p_B^*[/math] can be changed moving the slider below.