Difference between revisions of "Thermodynamics"

From AutoMeKin
Jump to navigation Jump to search
(Phase diagram at fixed temperature)
(Phase diagram of an ideal solution at fixed temperature)
Line 2: Line 2:
  
 
==Phase diagram of an ideal solution at fixed temperature==
 
==Phase diagram of an ideal solution at fixed temperature==
<div style="column-count:2;-moz-column-count:2;-webkit-column-count:2">
 
 
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are <math>p_A^*</math> and <math>p_B^*</math>, respectively.  
 
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are <math>p_A^*</math> and <math>p_B^*</math>, respectively.  
  
Line 18: Line 17:
  
 
In the example below <math>p_A^*=1</math> (a.u.) and the value of <math>p_B^*</math> can be changed moving the slider below.
 
In the example below <math>p_A^*=1</math> (a.u.) and the value of <math>p_B^*</math> can be changed moving the slider below.
</div>
 
  
  

Revision as of 07:27, 22 April 2019

Two-component vapor-liquid equilibrium

Phase diagram of an ideal solution at fixed temperature

The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are [math]p_A^*[/math] and [math]p_B^*[/math], respectively.

The blue curve shows the vapor pressure of the mixture [math]p[/math] as a function of the mole fraction of A in the liquid [math]x_A^l[/math]:

[math]p=p_B^*+(p_A^*-p_B^*)x_A^l[/math]

The red curve shows the vapor pressure of the mixture [math]p[/math] as a function of the mole fraction of A in the vapor [math]x_A^v[/math]:

[math]p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}[/math]

In the example below [math]p_A^*=1[/math] (a.u.) and the value of [math]p_B^*[/math] can be changed moving the slider below.


slider.py example