AutoMeKin

From AutoMeKin
Revision as of 16:49, 10 February 2024 by Wikiadmin (talk | contribs)
Jump to navigation Jump to search

All content from this page has been transferred to a gh.jpg repository, and this site will no longer receive support.


All content from this page has been transferred to a gh.jpg repository, and this site will no longer receive support.



Introduction

Automekin.png

AutoMeKin (formerly tsscds) has been designed to discover reaction mechanisms in an automated fashion. Transition states are located using MD simulations and Graph Theory algorithms. Monte Carlo simulations afford kinetic results. The only input is a starting structure in XYZ format. The method is described in these two publications: 1 2. At present MOPAC2016, Entos Qcore and Gaussian (G09/G16) are interfaced with AutoMeKin. The program has been tested on the following Linux distros: CentOS 7, Red Hat Enterprise Linux and Ubuntu 20.04 LTS.

To give you a flavor of the capabilities of the program you can try our web interface or Google Colab


Web.png

Developers team

Emilio Martinez-Nunez, George L. Barnes, Carles Bo, Diego Garay-Ruiz, David R. Glowacki, Sabine Kopec, Daniel Pelaez-Ruiz, Aurelio Rodriguez, Roberto Rodriguez-Fernandez, Robin J. Shannon, James J. P. Stewart, Pablo G. Tahoces and Saulo A. Vazquez

Address
Departamento de Química Física, Facultade de Química, Avda. das Ciencias s/n, 15782 Santiago de Compostela, SPAIN
email me

License

MIT License

Copyright (C) 2021 AutoMeKin

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Install the code

To install the code follow the Installation instructions

Tutorial

Download tutorial

The tutorial can be more easily followed executing the example:

https://colab.research.google.com/github/emartineznunez/AutoMeKin/blob/main/AutoMeKin.ipynb

Program execution

Unless you donwloaded the singularity container (in that case skip this step), to start using any of the scripts of the program, load the amk/2021 module:

module load amk/2021

To run the low-level calculations use:

nohup llcalcs.sh molecule.dat ntasks niter runningtasks >llcalcs.log 2>&1 &

where:
molecule is the name of your molecule
ntasks is the number of tasks
niter is the number of iterations
runningtasks is the number of simultaneous tasks

To run the high-level calculations use:

nohup hlcalcs.sh molecule.dat runningtasks >hlcalcs.log 2>&1 &

For more details, follow the instructions given in the tutorial

Reference

If you use AutoMeKin, please cite the following publications:

  1. E Martínez-Nuñez, G.L. Barnes, D.R. Glowacki, S. Kopec, D. Pelaez, A. Rodriguez, R. Rodriguez-Fernandez, R.J. Shannon, J.J.P. Stewart, P.G. Tahoces, S.A. Vazquez, J. Comput. Chem. 2021, 42, 2036
  2. E. Martínez-Núñez, J. Comput. Chem. 2015, 36, 222
  3. E. Martínez-Núñez, Phys. Chem. Chem. Phys. 2015,17, 14912
  4. J. J. P. Stewart, MOPAC2016, Stewart Computational Chemistry: Colorado Springs, CO, USA, HTTP://OpenMOPAC.net, 2016.

If you use the older version tsscds, please cite, instead of ref 1 above, the following one:

A. Rodriguez, R. Rodriguez-Fernandez, S.A. Vazquez, G.L. Barnes, J.J.P. Stewart, E Martínez-Nuñez, J. Comput. Chem. 2018, 39, 1922

Works that employ AutoMeKin

The following works employ AutoMeKin: Works

Changelog

Consult the Latest changes

Web interface and Google Colab

AutoMeKin can be used through our web interface.

The tutorial example (formic acid) can be easily tested on Google Colab using this link:

https://colab.research.google.com/github/emartineznunez/AutoMeKin/blob/main/AutoMeKin.ipynb

News

AutoMeKin is now interfaced with Gaussian 16 (from rev. 1131)

The Python library amk-tools can be employed to read, process and visualize reaction networks generated by AutoMeKin and is available in the latest singularity container (and through our web interface). Here is the paper describing the new tool: Garay-Ruiz et al. ACS Phys. Chem. Au 2022

AutoMekin got the GEQC-RSEQ 2021 Methodology Development Prize.

AutoMeKin now includes barrierless channels. However, these channels are not considered in the kinetics.

AutoMeKin has been interfaced with Entos Qcore.

AutoMeKin has been interfaced with BXDE to enhance its efficiency ( R. A. Jara-Toro et al. ChemSystemsChem doi: 10.1002/syst.201900024).

The method has also been recently generalized in a collaboration with Dani Pelaez and co-workers to study van der Waals structures ( S. Kopec et al. Int. J. Quantum Chem. 2019, 119, e26008 ) and also to generate sum-of-products PESs for quantum dynamics ( R. Panades-Barrueta et al. Frontiers in Chemistry 2019, 7, 576).

Return to Contents

Return to Main_Page