Difference between revisions of "Thermodynamics"

From AutoMeKin
Jump to navigation Jump to search
(Phase diagram of an ideal solution at fixed temperature)
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
===Two-component vapor-liquid equilibrium===
 
 
 
==Phase diagram of an ideal solution at fixed temperature==
 
==Phase diagram of an ideal solution at fixed temperature==
 
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are <math>p_A^*</math> and <math>p_B^*</math>, respectively.  
 
The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are <math>p_A^*</math> and <math>p_B^*</math>, respectively.  
Line 107: Line 105:
 
The number of moles in each phase (liquid or vapor) can be obtained from the lever rule:
 
The number of moles in each phase (liquid or vapor) can be obtained from the lever rule:
 
<center>
 
<center>
<math>n^lBK=n^vKR}</math>
+
<math>n^l\overline{\text{BK}}=n^v\overline{\text{KR}}</math>
 
</center>
 
</center>
  
Line 194: Line 192:
 
    
 
    
 
</html>
 
</html>
 +
 +
 +
Return to [[Main_Page]]

Revision as of 18:13, 15 January 2020

Phase diagram of an ideal solution at fixed temperature

The following plot shows the vapor-liquid phase diagram for a binary ideal mixture (components: A and B). The vapor pressures of the pure substances are [math]p_A^*[/math] and [math]p_B^*[/math], respectively.

The blue curve shows the vapor pressure [math]p[/math] of the mixture as a function of the mole fraction of A in the liquid [math]x_A^l[/math]:

[math]p=p_B^*+(p_A^*-p_B^*)x_A^l[/math]

The red curve shows the vapor pressure [math]p[/math] of the mixture as a function of the mole fraction of A in the vapor [math]x_A^v[/math]:

[math]p=\dfrac{p_A^*p_B^*}{p_A^*-(p_A^*-p_B^*)x_A^v}[/math]

In the example below [math]p_A^*=1[/math] (a.u.) and the value of [math]p_B^*[/math] can be changed moving the slider below.


slider.py example


The number of moles in each phase (liquid or vapor) can be obtained from the lever rule:

[math]n^l\overline{\text{BK}}=n^v\overline{\text{KR}}[/math]


slider.py example


Return to Main_Page